
Instructor�s Manual
by Thomas H. Cormen

Clara Lee
Erica Lin

to Accompany

Introduction to Algorithms
Second Edition
by Thomas H. Cormen

Charles E. Leiserson
Ronald L. Rivest
Clifford Stein

The MIT Press
Cambridge, Massachusetts London, England

McGraw-Hill Book Company
Boston Burr Ridge, IL Dubuque, IA Madison, WI
New York San Francisco St. Louis Montréal Toronto

Note
This is the Instructor's Manual for the book "Introduction to Algorithms".

It contains lecture notes on the chapters and solutions to the questions.

This is not a replacement for the book, you should go and buy your own copy.

Note: If you are being assessed on a course that uses this book, you use this at your own risk.

Matthew
Note
Unmarked set by Matthew

Matthew
Note
Completed set by Matthew

Matthew
Note
None set by Matthew

Matthew
Note
None set by Matthew

Instructor�s Manual
by Thomas H. Cormen, Clara Lee, and Erica Lin
to Accompany
Introduction to Algorithms, Second Edition
by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein

Published by The MIT Press and McGraw-Hill Higher Education, an imprint of The McGraw-Hill Companies,
Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright c© 2002 by The Massachusetts Institute of
Technology and The McGraw-Hill Companies, Inc. All rights reserved.

No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database
or retrieval system, without the prior written consent of The MIT Press or The McGraw-Hill Companies, Inc., in-
cluding, but not limited to, network or other electronic storage or transmission, or broadcast for distance learning.

Contents

Revision History R-1

Preface P-1

Chapter 2: Getting Started
Lecture Notes 2-1
Solutions 2-16

Chapter 3: Growth of Functions
Lecture Notes 3-1
Solutions 3-7

Chapter 4: Recurrences
Lecture Notes 4-1
Solutions 4-8

Chapter 5: Probabilistic Analysis and Randomized Algorithms
Lecture Notes 5-1
Solutions 5-8

Chapter 6: Heapsort
Lecture Notes 6-1
Solutions 6-10

Chapter 7: Quicksort
Lecture Notes 7-1
Solutions 7-9

Chapter 8: Sorting in Linear Time
Lecture Notes 8-1
Solutions 8-9

Chapter 9: Medians and Order Statistics
Lecture Notes 9-1
Solutions 9-9

Chapter 11: Hash Tables
Lecture Notes 11-1
Solutions 11-16

Chapter 12: Binary Search Trees
Lecture Notes 12-1
Solutions 12-12

Chapter 13: Red-Black Trees
Lecture Notes 13-1
Solutions 13-13

Chapter 14: Augmenting Data Structures
Lecture Notes 14-1
Solutions 14-9

iv Contents

Chapter 15: Dynamic Programming
Lecture Notes 15-1
Solutions 15-19

Chapter 16: Greedy Algorithms
Lecture Notes 16-1
Solutions 16-9

Chapter 17: Amortized Analysis
Lecture Notes 17-1
Solutions 17-14

Chapter 21: Data Structures for Disjoint Sets
Lecture Notes 21-1
Solutions 21-6

Chapter 22: Elementary Graph Algorithms
Lecture Notes 22-1
Solutions 22-12

Chapter 23: Minimum Spanning Trees
Lecture Notes 23-1
Solutions 23-8

Chapter 24: Single-Source Shortest Paths
Lecture Notes 24-1
Solutions 24-13

Chapter 25: All-Pairs Shortest Paths
Lecture Notes 25-1
Solutions 25-8

Chapter 26: Maximum Flow
Lecture Notes 26-1
Solutions 26-15

Chapter 27: Sorting Networks
Lecture Notes 27-1
Solutions 27-8

Index I-1

Revision History

Revisions are listed by date rather than being numbered. Because this revision
history is part of each revision, the affected chapters always include the front matter
in addition to those listed below.

• 18 January 2005. Corrected an error in the transpose-symmetry properties.
Affected chapters: Chapter 3.

• 2 April 2004. Added solutions to Exercises 5.4-6, 11.3-5, 12.4-1, 16.4-2,
16.4-3, 21.3-4, 26.4-2, 26.4-3, and 26.4-6 and to Problems 12-3 and 17-4. Made
minor changes in the solutions to Problems 11-2 and 17-2. Affected chapters:
Chapters 5, 11, 12, 16, 17, 21, and 26; index.

• 7 January 2004. Corrected two minor typographical errors in the lecture notes
for the expected height of a randomly built binary search tree. Affected chap-
ters: Chapter 12.

• 23 July 2003. Updated the solution to Exercise 22.3-4(b) to adjust for a correc-
tion in the text. Affected chapters: Chapter 22; index.

• 23 June 2003. Added the link to the website for the clrscode package to the
preface.

• 2 June 2003. Added the solution to Problem 24-6. Corrected solutions to Ex-
ercise 23.2-7 and Problem 26-4. Affected chapters: Chapters 23, 24, and 26;
index.

• 20 May 2003. Added solutions to Exercises 24.4-10 and 26.1-7. Affected
chapters: Chapters 24 and 26; index.

• 2 May 2003. Added solutions to Exercises 21.4-4, 21.4-5, 21.4-6, 22.1-6,
and 22.3-4. Corrected a minor typographical error in the Chapter 22 notes on
page 22-6. Affected chapters: Chapters 21 and 22; index.

• 28 April 2003. Added the solution to Exercise 16.1-2, corrected an error in
the Þrst adjacency matrix example in the Chapter 22 notes, and made a minor
change to the accounting method analysis for dynamic tables in the Chapter 17
notes. Affected chapters: Chapters 16, 17, and 22; index.

• 10 April 2003. Corrected an error in the solution to Exercise 11.3-3. Affected
chapters: Chapter 11.

• 3 April 2003. Reversed the order of Exercises 14.2-3 and 14.3-3. Affected
chapters: Chapter 13, index.

• 2 April 2003. Corrected an error in the substitution method for recurrences on
page 4-4. Affected chapters: Chapter 4.

R-2 Revision History

• 31 March 2003. Corrected a minor typographical error in the Chapter 8 notes
on page 8-3. Affected chapters: Chapter 8.

• 14 January 2003. Changed the exposition of indicator random variables in
the Chapter 5 notes to correct for an error in the text. Affected pages: 5-4
through 5-6. (The only content changes are on page 5-4; in pages 5-5 and 5-6
only pagination changes.) Affected chapters: Chapter 5.

• 14 January 2003. Corrected an error in the pseudocode for the solution to Ex-
ercise 2.2-2 on page 2-16. Affected chapters: Chapter 2.

• 7 October 2002. Corrected a typographical error in EUCLIDEAN-TSP on
page 15-23. Affected chapters: Chapter 15.

• 1 August 2002. Initial release.

Preface

This document is an instructor�s manual to accompany Introduction to Algorithms,
Second Edition, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. It is intended for use in a course on algorithms. You might
also Þnd some of the material herein to be useful for a CS 2-style course in data
structures.

Unlike the instructor�s manual for the Þrst edition of the text�which was organized
around the undergraduate algorithms course taught by Charles Leiserson at MIT
in Spring 1991�we have chosen to organize the manual for the second edition
according to chapters of the text. That is, for most chapters we have provided a
set of lecture notes and a set of exercise and problem solutions pertaining to the
chapter. This organization allows you to decide how to best use the material in the
manual in your own course.

We have not included lecture notes and solutions for every chapter, nor have we
included solutions for every exercise and problem within the chapters that we have
selected. We felt that Chapter 1 is too nontechnical to include here, and Chap-
ter 10 consists of background material that often falls outside algorithms and data-
structures courses. We have also omitted the chapters that are not covered in the
courses that we teach: Chapters 18�20 and 28�35, as well as Appendices A�C;
future editions of this manual may include some of these chapters. There are two
reasons that we have not included solutions to all exercises and problems in the
selected chapters. First, writing up all these solutions would take a long time, and
we felt it more important to release this manual in as timely a fashion as possible.
Second, if we were to include all solutions, this manual would be longer than the
text itself!

We have numbered the pages in this manual using the format CC-PP, where CC
is a chapter number of the text and PP is the page number within that chapter�s
lecture notes and solutions. The PP numbers restart from 1 at the beginning of each
chapter�s lecture notes. We chose this form of page numbering so that if we add
or change solutions to exercises and problems, the only pages whose numbering is
affected are those for the solutions for that chapter. Moreover, if we add material
for currently uncovered chapters, the numbers of the existing pages will remain
unchanged.

The lecture notes

The lecture notes are based on three sources:

P-2 Preface

• Some are from the Þrst-edition manual, and so they correspond to Charles Leis-
erson�s lectures in MIT�s undergraduate algorithms course, 6.046.

• Some are from Tom Cormen�s lectures in Dartmouth College�s undergraduate
algorithms course, CS 25.

• Some are written just for this manual.

You will Þnd that the lecture notes are more informal than the text, as is appro-
priate for a lecture situation. In some places, we have simpliÞed the material for
lecture presentation or even omitted certain considerations. Some sections of the
text�usually starred�are omitted from the lecture notes. (We have included lec-
ture notes for one starred section: 12.4, on randomly built binary search trees,
which we cover in an optional CS 25 lecture.)

In several places in the lecture notes, we have included �asides� to the instruc-
tor. The asides are typeset in a slanted font and are enclosed in square brack-
ets. [Here is an aside.] Some of the asides suggest leaving certain material on the
board, since you will be coming back to it later. If you are projecting a presenta-
tion rather than writing on a blackboard or whiteboard, you might want to mark
slides containing this material so that you can easily come back to them later in the
lecture.

We have chosen not to indicate how long it takes to cover material, as the time nec-
essary to cover a topic depends on the instructor, the students, the class schedule,
and other variables.

There are two differences in how we write pseudocode in the lecture notes and the
text:

• Lines are not numbered in the lecture notes. We Þnd them inconvenient to
number when writing pseudocode on the board.

• We avoid using the length attribute of an array. Instead, we pass the array
length as a parameter to the procedure. This change makes the pseudocode
more concise, as well as matching better with the description of what it does.

We have also minimized the use of shading in Þgures within lecture notes, since
drawing a Þgure with shading on a blackboard or whiteboard is difÞcult.

The solutions

The solutions are based on the same sources as the lecture notes. They are written
a bit more formally than the lecture notes, though a bit less formally than the text.
We do not number lines of pseudocode, but we do use the length attribute (on the
assumption that you will want your students to write pseudocode as it appears in
the text).

The index lists all the exercises and problems for which this manual provides solu-
tions, along with the number of the page on which each solution starts.

Asides appear in a handful of places throughout the solutions. Also, we are less
reluctant to use shading in Þgures within solutions, since these Þgures are more
likely to be reproduced than to be drawn on a board.

Preface P-3

Source Þles

For several reasons, we are unable to publish or transmit source Þles for this man-
ual. We apologize for this inconvenience.

In June 2003, we made available a clrscode package for LATEX 2ε . It enables
you to typeset pseudocode in the same way that we do. You can Þnd this package
at http://www.cs.dartmouth.edu/˜thc/clrscode/. That site also
includes documentation.

Reporting errors and suggestions

Undoubtedly, instructors will Þnd errors in this manual. Please report errors by
sending email to clrs-manual-bugs@mhhe.com

If you have a suggestion for an improvement to this manual, please feel free to
submit it via email to clrs-manual-suggestions@mhhe.com

As usual, if you Þnd an error in the text itself, please verify that it has not already
been posted on the errata web page before you submit it. You can use the MIT
Press web site for the text, http://mitpress.mit.edu/algorithms/, to
locate the errata web page and to submit an error report.

We thank you in advance for your assistance in correcting errors in both this manual
and the text.

Acknowledgments

This manual borrows heavily from the Þrst-edition manual, which was written by
Julie Sussman, P.P.A. Julie did such a superb job on the Þrst-edition manual, Þnd-
ing numerous errors in the Þrst-edition text in the process, that we were thrilled to
have her serve as technical copyeditor for the second-edition text. Charles Leiser-
son also put in large amounts of time working with Julie on the Þrst-edition manual.

The other three Introduction to Algorithms authors�Charles Leiserson, Ron
Rivest, and Cliff Stein�provided helpful comments and suggestions for solutions
to exercises and problems. Some of the solutions are modiÞcations of those written
over the years by teaching assistants for algorithms courses at MIT and Dartmouth.
At this point, we do not know which TAs wrote which solutions, and so we simply
thank them collectively.

We also thank McGraw-Hill and our editors, Betsy Jones and Melinda Dougharty,
for moral and Þnancial support. Thanks also to our MIT Press editor, Bob Prior,
and to David Jones of The MIT Press for help with TEX macros. Wayne Cripps,
John Konkle, and Tim Tregubov provided computer support at Dartmouth, and the
MIT sysadmins were Greg Shomo and Matt McKinnon. Phillip Meek of McGraw-
Hill helped us hook this manual into their web site.

THOMAS H. CORMEN

CLARA LEE

ERICA LIN

Hanover, New Hampshire
July 2002

Lecture Notes for Chapter 2:
Getting Started

Chapter 2 overview

Goals:

• Start using frameworks for describing and analyzing algorithms.
• Examine two algorithms for sorting: insertion sort and merge sort.
• See how to describe algorithms in pseudocode.
• Begin using asymptotic notation to express running-time analysis.
• Learn the technique of �divide and conquer� in the context of merge sort.

Insertion sort

The sorting problem

Input: A sequence of n numbers 〈a1, a2, . . . , an〉.
Output: A permutation (reordering) 〈a′1, a′2, . . . , a′n〉 of the input sequence such

that a′1 ≤ a′2 ≤ · · · ≤ a′n .

The sequences are typically stored in arrays.

We also refer to the numbers as keys. Along with each key may be additional
information, known as satellite data. [You might want to clarify that �satellite
data� does not necessarily come from a satellite!]

We will see several ways to solve the sorting problem. Each way will be expressed
as an algorithm: a well-deÞned computational procedure that takes some value, or
set of values, as input and produces some value, or set of values, as output.

Expressing algorithms

We express algorithms in whatever way is the clearest and most concise.

English is sometimes the best way.

When issues of control need to be made perfectly clear, we often use pseudocode.

2-2 Lecture Notes for Chapter 2: Getting Started

• Pseudocode is similar to C, C++, Pascal, and Java. If you know any of these
languages, you should be able to understand pseudocode.

• Pseudocode is designed for expressing algorithms to humans. Software en-
gineering issues of data abstraction, modularity, and error handling are often
ignored.

• We sometimes embed English statements into pseudocode. Therefore, unlike
for �real� programming languages, we cannot create a compiler that translates
pseudocode to machine code.

Insertion sort

A good algorithm for sorting a small number of elements.

It works the way you might sort a hand of playing cards:

• Start with an empty left hand and the cards face down on the table.
• Then remove one card at a time from the table, and insert it into the correct

position in the left hand.
• To Þnd the correct position for a card, compare it with each of the cards already

in the hand, from right to left.
• At all times, the cards held in the left hand are sorted, and these cards were

originally the top cards of the pile on the table.

Pseudocode: We use a procedure INSERTION-SORT.

• Takes as parameters an array A[1 . . n] and the length n of the array.
• As in Pascal, we use �. .� to denote a range within an array.
• [We usually use 1-origin indexing, as we do here. There are a few places in

later chapters where we use 0-origin indexing instead. If you are translating
pseudocode to C, C++, or Java, which use 0-origin indexing, you need to be
careful to get the indices right. One option is to adjust all index calculations
in the C, C++, or Java code to compensate. An easier option is, when using an
array A[1 . . n], to allocate the array to be one entry longer�A[0 . . n]�and just
don�t use the entry at index 0.]

• [In the lecture notes, we indicate array lengths by parameters rather than by
using the length attribute that is used in the book. That saves us a line of pseu-
docode each time. The solutions continue to use the length attribute.]

• The array A is sorted in place: the numbers are rearranged within the array,
with at most a constant number outside the array at any time.

Lecture Notes for Chapter 2: Getting Started 2-3

INSERTION-SORT(A) cost times
for j ← 2 to n c1 n

do key ← A[j] c2 n − 1
� Insert A[j] into the sorted sequence A[1 . . j − 1]. 0 n − 1
i ← j − 1 c4 n − 1
while i > 0 and A[i] > key c5

∑n
j=2 t j

do A[i + 1] ← A[i] c6
∑n

j=2(t j − 1)

i ← i − 1 c7
∑n

j=2(t j − 1)

A[i + 1] ← key c8 n − 1

[Leave this on the board, but show only the pseudocode for now. We�ll put in the
�cost� and �times� columns later.]

Example:

1 2 3 4 5 6

5 2 4 6 1 3
1 2 3 4 5 6

2 5 4 6 1 3
1 2 3 4 5 6

2 4 5 6 1 3

1 2 3 4 5 6

2 4 5 6 1 3
1 2 3 4 5 6

2 4 5 61 3
1 2 3 4 5 6

2 4 5 61 3

j j j

j j

[Read this Þgure row by row. Each part shows what happens for a particular itera-
tion with the value of j indicated. j indexes the �current card� being inserted into
the hand. Elements to the left of A[j] that are greater than A[j] move one position
to the right, and A[j] moves into the evacuated position. The heavy vertical lines
separate the part of the array in which an iteration works�A[1 . . j]�from the part
of the array that is unaffected by this iteration�A[j + 1 . . n]. The last part of the
Þgure shows the Þnal sorted array.]

Correctness

We often use a loop invariant to help us understand why an algorithm gives the
correct answer. Here�s the loop invariant for INSERTION-SORT:

Loop invariant: At the start of each iteration of the �outer� for loop�the
loop indexed by j�the subarray A[1 . . j −1] consists of the elements orig-
inally in A[1 . . j − 1] but in sorted order.

To use a loop invariant to prove correctness, we must show three things about it:

Initialization: It is true prior to the Þrst iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the
next iteration.

Termination: When the loop terminates, the invariant�usually along with the
reason that the loop terminated�gives us a useful property that helps show that
the algorithm is correct.

Using loop invariants is like mathematical induction:

2-4 Lecture Notes for Chapter 2: Getting Started

• To prove that a property holds, you prove a base case and an inductive step.
• Showing that the invariant holds before the Þrst iteration is like the base case.
• Showing that the invariant holds from iteration to iteration is like the inductive

step.
• The termination part differs from the usual use of mathematical induction, in

which the inductive step is used inÞnitely. We stop the �induction� when the
loop terminates.

• We can show the three parts in any order.

For insertion sort:

Initialization: Just before the Þrst iteration, j = 2. The subarray A[1 . . j − 1]
is the single element A[1], which is the element originally in A[1], and it is
trivially sorted.

Maintenance: To be precise, we would need to state and prove a loop invariant
for the �inner� while loop. Rather than getting bogged down in another loop
invariant, we instead note that the body of the innerwhile loop works by moving
A[j − 1], A[j − 2], A[j − 3], and so on, by one position to the right until the
proper position for key (which has the value that started out in A[j]) is found.
At that point, the value of key is placed into this position.

Termination: The outer for loop ends when j > n; this occurs when j = n + 1.
Therefore, j−1 = n. Plugging n in for j−1 in the loop invariant, the subarray
A[1 . . n] consists of the elements originally in A[1 . . n] but in sorted order. In
other words, the entire array is sorted!

Pseudocode conventions

[Covering most, but not all, here. See book pages 19�20 for all conventions.]
• Indentation indicates block structure. Saves space and writing time.
• Looping constructs are like in C, C++, Pascal, and Java. We assume that the

loop variable in a for loop is still deÞned when the loop exits (unlike in Pascal).
• ��� indicates that the remainder of the line is a comment.
• Variables are local, unless otherwise speciÞed.
• We often use objects, which have attributes (equivalently, Þelds). For an at-

tribute attr of object x , we write attr[x]. (This would be the equivalent of
x . attr in Java or x-> attr in C++.)

• Objects are treated as references, like in Java. If x and y denote objects, then
the assignment y ← x makes x and y reference the same object. It does not
cause attributes of one object to be copied to another.

• Parameters are passed by value, as in Java and C (and the default mechanism in
Pascal and C++). When an object is passed by value, it is actually a reference
(or pointer) that is passed; changes to the reference itself are not seen by the
caller, but changes to the object�s attributes are.

• The boolean operators �and� and �or� are short-circuiting: if after evaluating
the left-hand operand, we know the result of the expression, then we don�t
evaluate the right-hand operand. (If x is FALSE in �x and y� then we don�t
evaluate y. If x is TRUE in �x or y� then we don�t evaluate y.)

Lecture Notes for Chapter 2: Getting Started 2-5

Analyzing algorithms

We want to predict the resources that the algorithm requires. Usually, running time.

In order to predict resource requirements, we need a computational model.

Random-access machine (RAM) model

• Instructions are executed one after another. No concurrent operations.
• It�s too tedious to deÞne each of the instructions and their associated time costs.
• Instead, we recognize that we�ll use instructions commonly found in real com-

puters:

• Arithmetic: add, subtract, multiply, divide, remainder, ßoor, ceiling). Also,
shift left/shift right (good for multiplying/dividing by 2k).

• Data movement: load, store, copy.
• Control: conditional/unconditional branch, subroutine call and return.

Each of these instructions takes a constant amount of time.

The RAM model uses integer and ßoating-point types.
• We don�t worry about precision, although it is crucial in certain numerical ap-

plications.
• There is a limit on the word size: when working with inputs of size n, assume

that integers are represented by c lg n bits for some constant c ≥ 1. (lg n is a
very frequently used shorthand for log2 n.)

• c ≥ 1⇒we can hold the value of n ⇒we can index the individual elements.
• c is a constant ⇒ the word size cannot grow arbitrarily.

How do we analyze an algorithm�s running time?

The time taken by an algorithm depends on the input.
• Sorting 1000 numbers takes longer than sorting 3 numbers.
• A given sorting algorithm may even take differing amounts of time on two

inputs of the same size.
• For example, we�ll see that insertion sort takes less time to sort n elements when

they are already sorted than when they are in reverse sorted order.

Input size: Depends on the problem being studied.
• Usually, the number of items in the input. Like the size n of the array being

sorted.
• But could be something else. If multiplying two integers, could be the total

number of bits in the two integers.
• Could be described by more than one number. For example, graph algorithm

running times are usually expressed in terms of the number of vertices and the
number of edges in the input graph.

2-6 Lecture Notes for Chapter 2: Getting Started

Running time: On a particular input, it is the number of primitive operations
(steps) executed.

• Want to deÞne steps to be machine-independent.
• Figure that each line of pseudocode requires a constant amount of time.
• One line may take a different amount of time than another, but each execution

of line i takes the same amount of time ci .
• This is assuming that the line consists only of primitive operations.

• If the line is a subroutine call, then the actual call takes constant time, but the
execution of the subroutine being called might not.

• If the line speciÞes operations other than primitive ones, then it might take
more than constant time. Example: �sort the points by x-coordinate.�

Analysis of insertion sort

[Now add statement costs and number of times executed to INSERTION-SORT

pseudocode.]

• Assume that the i th line takes time ci , which is a constant. (Since the third line
is a comment, it takes no time.)

• For j = 2, 3, . . . , n, let t j be the number of times that the while loop test is
executed for that value of j .

• Note that when a for or while loop exits in the usual way�due to the test in the
loop header�the test is executed one time more than the loop body.

The running time of the algorithm is∑
all statements

(cost of statement) · (number of times statement is executed) .

Let T (n) = running time of INSERTION-SORT.

T (n) = c1n + c2(n − 1)+ c4(n − 1)+ c5

n∑
j=2

t j + c6

n∑
j=2

(t j − 1)

+ c7

n∑
j=2

(t j − 1)+ c8(n − 1) .

The running time depends on the values of tj . These vary according to the input.

Best case: The array is already sorted.

• Always Þnd that A[i] ≤ key upon the Þrst time the while loop test is run (when
i = j − 1).

• All t j are 1.
• Running time is

T (n) = c1n + c2(n − 1)+ c4(n − 1)+ c5(n − 1)+ c8(n − 1)

= (c1 + c2 + c4 + c5 + c8)n − (c2 + c4 + c5 + c8) .

• Can express T (n) as an+b for constants a and b (that depend on the statement
costs ci) ⇒ T (n) is a linear function of n.

Lecture Notes for Chapter 2: Getting Started 2-7

Worst case: The array is in reverse sorted order.

• Always Þnd that A[i] > key in while loop test.
• Have to compare key with all elements to the left of the j th position ⇒ compare

with j − 1 elements.
• Since the while loop exits because i reaches 0, there�s one additional test after

the j − 1 tests ⇒ tj = j .

•
n∑

j=2

t j =
n∑

j=2

j and
n∑

j=2

(t j − 1) =
n∑

j=2

(j − 1).

•
n∑

j=1

j is known as an arithmetic series, and equation (A.1) shows that it equals

n(n + 1)

2
.

• Since
n∑

j=2

j =
(

n∑
j=1

j

)
− 1, it equals

n(n + 1)

2
− 1.

[The parentheses around the summation are not strictly necessary. They are
there for clarity, but it might be a good idea to remind the students that the
meaning of the expression would be the same even without the parentheses.]

• Letting k = j − 1, we see that
n∑

j=2

(j − 1) =
n−1∑
k=1

k = n(n − 1)

2
.

• Running time is

T (n) = c1n + c2(n − 1)+ c4(n − 1)+ c5

(
n(n + 1)

2
− 1

)
+ c6

(
n(n − 1)

2

)
+ c7

(
n(n − 1)

2

)
+ c8(n − 1)

=
(c5

2
+ c6

2
+ c7

2

)
n2 +

(
c1 + c2 + c4 + c5

2
− c6

2
− c7

2
+ c8

)
n

− (c2 + c4 + c5 + c8) .

• Can express T (n) as an2 + bn + c for constants a, b, c (that again depend on
statement costs) ⇒ T (n) is a quadratic function of n.

Worst-case and average-case analysis

We usually concentrate on Þnding the worst-case running time: the longest run-
ning time for any input of size n.

Reasons:

• The worst-case running time gives a guaranteed upper bound on the running
time for any input.

• For some algorithms, the worst case occurs often. For example, when search-
ing, the worst case often occurs when the item being searched for is not present,
and searches for absent items may be frequent.

• Why not analyze the average case? Because it�s often about as bad as the worst
case.

2-8 Lecture Notes for Chapter 2: Getting Started

Example: Suppose that we randomly choose n numbers as the input to inser-
tion sort.

On average, the key in A[j] is less than half the elements in A[1 . . j − 1] and
it�s greater than the other half.
⇒ On average, the while loop has to look halfway through the sorted subarray
A[1 . . j − 1] to decide where to drop key.
⇒ t j = j/2.

Although the average-case running time is approximately half of the worst-case
running time, it�s still a quadratic function of n.

Order of growth

Another abstraction to ease analysis and focus on the important features.

Look only at the leading term of the formula for running time.
• Drop lower-order terms.
• Ignore the constant coefÞcient in the leading term.

Example: For insertion sort, we already abstracted away the actual statement costs
to conclude that the worst-case running time is an2 + bn + c.
Drop lower-order terms ⇒ an2.
Ignore constant coefÞcient ⇒ n2.

But we cannot say that the worst-case running time T (n) equals n2.

It grows like n2. But it doesn�t equal n2.

We say that the running time is �(n2) to capture the notion that the order of growth
is n2.

We usually consider one algorithm to be more efÞcient than another if its worst-
case running time has a smaller order of growth.

Designing algorithms

There are many ways to design algorithms.

For example, insertion sort is incremental: having sorted A[1 . . j − 1], place A[j]
correctly, so that A[1 . . j] is sorted.

Divide and conquer

Another common approach.

Divide the problem into a number of subproblems.
Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by brute force.

[It would be a good idea to make sure that your students are comfortable with
recursion. If they are not, then they will have a hard time understanding divide
and conquer.]

Combine the subproblem solutions to give a solution to the original problem.

Lecture Notes for Chapter 2: Getting Started 2-9

Merge sort

A sorting algorithm based on divide and conquer. Its worst-case running time has
a lower order of growth than insertion sort.

Because we are dealing with subproblems, we state each subproblem as sorting
a subarray A[p . . r]. Initially, p = 1 and r = n, but these values change as we
recurse through subproblems.

To sort A[p . . r]:

Divide by splitting into two subarrays A[p . . q] and A[q + 1 . . r], where q is the
halfway point of A[p . . r].

Conquer by recursively sorting the two subarrays A[p . . q] and A[q + 1 . . r].

Combine by merging the two sorted subarrays A[p . . q] and A[q + 1 . . r] to pro-
duce a single sorted subarray A[p . . r]. To accomplish this step, we�ll deÞne a
procedure MERGE(A, p, q, r).

The recursion bottoms out when the subarray has just 1 element, so that it�s trivially
sorted.

MERGE-SORT(A, p, r)

if p < r � Check for base case
then q ← 	(p + r)/2
 � Divide

MERGE-SORT(A, p, q) � Conquer
MERGE-SORT(A, q + 1, r) � Conquer
MERGE(A, p, q, r) � Combine

Initial call: MERGE-SORT(A, 1, n)

[It is astounding how often students forget how easy it is to compute the halfway
point of p and r as their average (p + r)/2. We of course have to take the ßoor
to ensure that we get an integer index q. But it is common to see students perform
calculations like p+ (r − p)/2, or even more elaborate expressions, forgetting the
easy way to compute an average.]

Example: Bottom-up view for n = 8: [Heavy lines demarcate subarrays used in
subproblems.]

1 2 3 4 5 6 7 8

5 2 4 7 1 3 2 6

2 5 4 7 1 3 2 6

initial array

merge

2 4 5 7 1 2 3 6

merge

1 2 3 4 5 6 7

merge

sorted array

2
1 2 3 4 5 6 7 8

2-10 Lecture Notes for Chapter 2: Getting Started

[Examples when n is a power of 2 are most straightforward, but students might
also want an example when n is not a power of 2.]

Bottom-up view for n = 11:

1 2 3 4 5 6 7 8

4 7 2 6 1 4 7 3

initial array

merge

merge

merge

sorted array

5 2 6

9 10 11

4 7 2 1 6 4 3 7 5 2 6

2 4 7 1 4 6 3 5 7 2 6

1 2 4 4 6 7 2 3 5 6 7

1 2 2 3 4 4 5 6 6 7 7
1 2 3 4 5 6 7 8 9 10 11

merge

[Here, at the next-to-last level of recursion, some of the subproblems have only 1
element. The recursion bottoms out on these single-element subproblems.]

Merging

What remains is the MERGE procedure.

Input: Array A and indices p, q, r such that

• p ≤ q < r .
• Subarray A[p . . q] is sorted and subarray A[q + 1 . . r] is sorted. By the

restrictions on p, q, r , neither subarray is empty.

Output: The two subarrays are merged into a single sorted subarray in A[p . . r].

We implement it so that it takes �(n) time, where n = r − p+ 1 = the number of
elements being merged.

What is n? Until now, n has stood for the size of the original problem. But now
we�re using it as the size of a subproblem. We will use this technique when we
analyze recursive algorithms. Although we may denote the original problem size
by n, in general n will be the size of a given subproblem.

Idea behind linear-time merging: Think of two piles of cards.

• Each pile is sorted and placed face-up on a table with the smallest cards on top.
• We will merge these into a single sorted pile, face-down on the table.
• A basic step:

• Choose the smaller of the two top cards.

Lecture Notes for Chapter 2: Getting Started 2-11

• Remove it from its pile, thereby exposing a new top card.
• Place the chosen card face-down onto the output pile.

• Repeatedly perform basic steps until one input pile is empty.
• Once one input pile empties, just take the remaining input pile and place it

face-down onto the output pile.
• Each basic step should take constant time, since we check just the two top cards.
• There are ≤ n basic steps, since each basic step removes one card from the

input piles, and we started with n cards in the input piles.
• Therefore, this procedure should take �(n) time.

We don�t actually need to check whether a pile is empty before each basic step.
• Put on the bottom of each input pile a special sentinel card.
• It contains a special value that we use to simplify the code.
• We use ∞, since that�s guaranteed to �lose� to any other value.
• The only way that ∞ cannot lose is when both piles have ∞ exposed as their

top cards.
• But when that happens, all the nonsentinel cards have already been placed into

the output pile.
• We know in advance that there are exactly r − p + 1 nonsentinel cards ⇒ stop

once we have performed r − p + 1 basic steps. Never a need to check for
sentinels, since they�ll always lose.

• Rather than even counting basic steps, just Þll up the output array from index p
up through and including index r .

Pseudocode:

MERGE(A, p, q, r)

n1 ← q − p + 1
n2 ← r − q
create arrays L[1 . . n1 + 1] and R[1 . . n2 + 1]
for i ← 1 to n1

do L[i] ← A[p + i − 1]
for j ← 1 to n2

do R[j] ← A[q + j]
L[n1 + 1] ←∞
R[n2 + 1] ←∞
i ← 1
j ← 1
for k ← p to r

do if L[i] ≤ R[j]
then A[k] ← L[i]

i ← i + 1
else A[k] ← R[j]

j ← j + 1

[The book uses a loop invariant to establish that MERGE works correctly. In a
lecture situation, it is probably better to use an example to show that the procedure
works correctly.]

2-12 Lecture Notes for Chapter 2: Getting Started

Example: A call of MERGE(9, 12, 16)

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7 1 2 3 6

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

2 4 5 7 1 2 3 6 4 5 7 1 2 3 6

A

L R

9 10 11 12 13 14 15 16

1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

5 7 1 2 3 62 A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

7 1 2 3 62 2

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 168
�

17
�

8
�

17
�

8
�

17
�

8
�

17
�

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

1 2 3 62 2 3 A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

2 3 62 2 3 4

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

3 62 2 3 4 5 A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

62 2 3 4 5

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

6

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

72 2 3 4 5

5
∞

5
∞

6

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

8
�

17
�

8
�

17
�

8
�

17
�

8
�

17
�

8
�

17
�

[Read this Þgure row by row. The Þrst part shows the arrays at the start of the
�for k ← p to r� loop, where A[p . . q] is copied into L[1 . . n1] and A[q+1 . . r] is
copied into R[1 . . n2]. Succeeding parts show the situation at the start of successive
iterations. Entries in A with slashes have had their values copied to either L or R
and have not had a value copied back in yet. Entries in L and R with slashes have
been copied back into A. The last part shows that the subarrays are merged back
into A[p . . r], which is now sorted, and that only the sentinels (∞) are exposed in
the arrays L and R.]

Running time: The Þrst two for loops take �(n1+ n2) = �(n) time. The last for
loop makes n iterations, each taking constant time, for �(n) time.
Total time: �(n).

Lecture Notes for Chapter 2: Getting Started 2-13

Analyzing divide-and-conquer algorithms

Use a recurrence equation (more commonly, a recurrence) to describe the running
time of a divide-and-conquer algorithm.

Let T (n) = running time on a problem of size n.

• If the problem size is small enough (say, n ≤ c for some constant c), we have a
base case. The brute-force solution takes constant time: �(1).

• Otherwise, suppose that we divide into a subproblems, each 1/b the size of the
original. (In merge sort, a = b = 2.)

• Let the time to divide a size-n problem be D(n).
• There are a subproblems to solve, each of size n/b ⇒ each subproblem takes

T (n/b) time to solve ⇒ we spend aT (n/b) time solving subproblems.
• Let the time to combine solutions be C(n).
• We get the recurrence

T (n) =
{
�(1) if n ≤ c ,

aT (n/b)+ D(n)+ C(n) otherwise .

Analyzing merge sort

For simplicity, assume that n is a power of 2 ⇒ each divide step yields two sub-
problems, both of size exactly n/2.

The base case occurs when n = 1.

When n ≥ 2, time for merge sort steps:

Divide: Just compute q as the average of p and r ⇒ D(n) = �(1).

Conquer: Recursively solve 2 subproblems, each of size n/2 ⇒ 2T (n/2).

Combine: MERGE on an n-element subarray takes �(n) time ⇒ C(n) = �(n).

Since D(n) = �(1) and C(n) = �(n), summed together they give a function that
is linear in n: �(n)⇒ recurrence for merge sort running time is

T (n) =
{
�(1) if n = 1 ,

2T (n/2)+�(n) if n > 1 .

Solving the merge-sort recurrence: By the master theorem in Chapter 4, we can
show that this recurrence has the solution T (n) = �(n lg n). [Reminder: lg n
stands for log2 n.]

Compared to insertion sort (�(n2) worst-case time), merge sort is faster. Trading
a factor of n for a factor of lg n is a good deal.

On small inputs, insertion sort may be faster. But for large enough inputs, merge
sort will always be faster, because its running time grows more slowly than inser-
tion sort�s.

We can understand how to solve the merge-sort recurrence without the master the-
orem.

2-14 Lecture Notes for Chapter 2: Getting Started

• Let c be a constant that describes the running time for the base case and also
is the time per array element for the divide and conquer steps. [Of course, we
cannot necessarily use the same constant for both. It�s not worth going into this
detail at this point.]

• We rewrite the recurrence as

T (n) =
{

c if n = 1 ,

2T (n/2)+ cn if n > 1 .

• Draw a recursion tree, which shows successive expansions of the recurrence.
• For the original problem, we have a cost of cn, plus the two subproblems, each

costing T (n/2):
cn

T(n/2) T(n/2)

• For each of the size-n/2 subproblems, we have a cost of cn/2, plus two sub-
problems, each costing T (n/4):

cn

cn/2

T(n/4) T(n/4)

cn/2

T(n/4) T(n/4)

• Continue expanding until the problem sizes get down to 1:

cn

cn

�

Total: cn lg n + cn

cn

lg n

cn

n

c c c c c c c

�

cn

cn/2

cn/4 cn/4

cn/2

cn/4 cn/4

Lecture Notes for Chapter 2: Getting Started 2-15

• Each level has cost cn.

• The top level has cost cn.
• The next level down has 2 subproblems, each contributing cost cn/2.
• The next level has 4 subproblems, each contributing cost cn/4.
• Each time we go down one level, the number of subproblems doubles but the

cost per subproblem halves ⇒ cost per level stays the same.

• There are lg n + 1 levels (height is lg n).

• Use induction.
• Base case: n = 1 ⇒ 1 level, and lg 1+ 1 = 0+ 1 = 1.
• Inductive hypothesis is that a tree for a problem size of 2i has lg 2i+1 = i+1

levels.
• Because we assume that the problem size is a power of 2, the next problem

size up after 2i is 2i+1.
• A tree for a problem size of 2i+1 has one more level than the size-2i tree ⇒

i + 2 levels.
• Since lg 2i+1 + 1 = i + 2, we�re done with the inductive argument.

• Total cost is sum of costs at each level. Have lg n+ 1 levels, each costing cn ⇒
total cost is cn lg n + cn.

• Ignore low-order term of cn and constant coefÞcient c ⇒ �(n lg n).

Solutions for Chapter 2:
Getting Started

Solution to Exercise 2.2-2

SELECTION-SORT(A)

n ← length[A]
for j ← 1 to n − 1

do smallest ← j
for i ← j + 1 to n

do if A[i] < A[smallest]
then smallest ← i

exchange A[j] ↔ A[smallest]

The algorithm maintains the loop invariant that at the start of each iteration of the
outer for loop, the subarray A[1 . . j − 1] consists of the j − 1 smallest elements
in the array A[1 . . n], and this subarray is in sorted order. After the Þrst n − 1
elements, the subarray A[1 . . n − 1] contains the smallest n − 1 elements, sorted,
and therefore element A[n] must be the largest element.

The running time of the algorithm is �(n2) for all cases.

Solution to Exercise 2.2-4

Modify the algorithm so it tests whether the input satisÞes some special-case con-
dition and, if it does, output a pre-computed answer. The best-case running time is
generally not a good measure of an algorithm.

Solution to Exercise 2.3-3

The base case is when n = 2, and we have n lg n = 2 lg 2 = 2 · 1 = 2.

Solutions for Chapter 2: Getting Started 2-17

For the inductive step, our inductive hypothesis is that T (n/2) = (n/2) lg(n/2).
Then

T (n) = 2T (n/2)+ n

= 2(n/2) lg(n/2)+ n

= n(lg n − 1)+ n

= n lg n − n + n

= n lg n ,

which completes the inductive proof for exact powers of 2.

Solution to Exercise 2.3-4

Since it takes �(n) time in the worst case to insert A[n] into the sorted array
A[1 . . n − 1], we get the recurrence

T (n) =
{
�(1) if n = 1 ,

T (n − 1)+�(n) if n > 1 .

The solution to this recurrence is T (n) = �(n2).

Solution to Exercise 2.3-5

Procedure BINARY-SEARCH takes a sorted array A, a value v, and a range
[low . . high] of the array, in which we search for the value v. The procedure com-
pares v to the array entry at the midpoint of the range and decides to eliminate half
the range from further consideration. We give both iterative and recursive versions,
each of which returns either an index i such that A[i] = v, or NIL if no entry of
A[low . . high] contains the value v. The initial call to either version should have
the parameters A, v, 1, n.

ITERATIVE-BINARY-SEARCH(A, v, low, high)

while low ≤ high
do mid ← 	(low+ high)/2

if v = A[mid]
then return mid

if v > A[mid]
then low ← mid+1
else high ← mid−1

return NIL

2-18 Solutions for Chapter 2: Getting Started

RECURSIVE-BINARY-SEARCH(A, v, low, high)

if low > high
then return NIL

mid ← 	(low+ high)/2

if v = A[mid]
then return mid

if v > A[mid]
then return RECURSIVE-BINARY-SEARCH(A, v, mid+1, high)

else return RECURSIVE-BINARY-SEARCH(A, v, low, mid−1)

Both procedures terminate the search unsuccessfully when the range is empty (i.e.,
low > high) and terminate it successfully if the value v has been found. Based
on the comparison of v to the middle element in the searched range, the search
continues with the range halved. The recurrence for these procedures is therefore
T (n) = T (n/2)+�(1), whose solution is T (n) = �(lg n).

Solution to Exercise 2.3-6

The while loop of lines 5�7 of procedure INSERTION-SORT scans backward
through the sorted array A[1 . . j − 1] to Þnd the appropriate place for A[j]. The
hitch is that the loop not only searches for the proper place for A[j], but that it also
moves each of the array elements that are bigger than A[j] one position to the right
(line 6). These movements can take as much as �(j) time, which occurs when all
the j − 1 elements preceding A[j] are larger than A[j]. We can use binary search
to improve the running time of the search to �(lg j), but binary search will have no
effect on the running time of moving the elements. Therefore, binary search alone
cannot improve the worst-case running time of INSERTION-SORT to �(n lg n).

Solution to Exercise 2.3-7

The following algorithm solves the problem:

1. Sort the elements in S.

2. Form the set S′ = {z : z = x − y for some y ∈ S}.
3. Sort the elements in S′.
4. If any value in S appears more than once, remove all but one instance. Do the

same for S′.
5. Merge the two sorted sets S and S′.
6. There exist two elements in S whose sum is exactly x if and only if the same

value appears in consecutive positions in the merged output.

To justify the claim in step 4, Þrst observe that if any value appears twice in the
merged output, it must appear in consecutive positions. Thus, we can restate the
condition in step 5 as there exist two elements in S whose sum is exactly x if and
only if the same value appears twice in the merged output.

Solutions for Chapter 2: Getting Started 2-19

Suppose that some value w appears twice. Then w appeared once in S and once
in S′. Because w appeared in S′, there exists some y ∈ S such that w = x − y, or
x = w + y. Since w ∈ S, the elements w and y are in S and sum to x .

Conversely, suppose that there are values w, y ∈ S such that w + y = x . Then,
since x − y = w, the value w appears in S′. Thus, w is in both S and S′, and so it
will appear twice in the merged output.

Steps 1 and 3 require O(n lg n) steps. Steps 2, 4, 5, and 6 require O(n) steps. Thus
the overall running time is O(n lg n).

Solution to Problem 2-1

[It may be better to assign this problem after covering asymptotic notation in Sec-
tion 3.1; otherwise part (c) may be too difÞcult.]

a. Insertion sort takes �(k2) time per k-element list in the worst case. Therefore,
sorting n/k lists of k elements each takes �(k2n/k) = �(nk) worst-case time.

b. Just extending the 2-list merge to merge all the lists at once would take
�(n · (n/k)) = �(n2/k) time (n from copying each element once into the
result list, n/k from examining n/k lists at each step to select next item for
result list).

To achieve �(n lg(n/k))-time merging, we merge the lists pairwise, then merge
the resulting lists pairwise, and so on, until there�s just one list. The pairwise
merging requires �(n) work at each level, since we are still working on n el-
ements, even if they are partitioned among sublists. The number of levels,
starting with n/k lists (with k elements each) and Þnishing with 1 list (with n
elements), is �lg(n/k)�. Therefore, the total running time for the merging is
�(n lg(n/k)).

c. The modiÞed algorithm has the same asymptotic running time as standard
merge sort when �(nk+ n lg(n/k)) = �(n lg n). The largest asymptotic value
of k as a function of n that satisÞes this condition is k = �(lg n).

To see why, Þrst observe that k cannot be more than �(lg n) (i.e., it can�t have
a higher-order term than lg n), for otherwise the left-hand expression wouldn�t
be �(n lg n) (because it would have a higher-order term than n lg n). So all
we need to do is verify that k = �(lg n) works, which we can do by plugging
k = lg n into �(nk + n lg(n/k)) = �(nk + n lg n − n lg k) to get

�(n lg n + n lg n − n lg lg n) = �(2n lg n − n lg lg n) ,

which, by taking just the high-order term and ignoring the constant coefÞcient,
equals �(n lg n).

d. In practice, k should be the largest list length on which insertion sort is faster
than merge sort.

2-20 Solutions for Chapter 2: Getting Started

Solution to Problem 2-2

a. We need to show that the elements of A′ form a permutation of the elements
of A.

b. Loop invariant: At the start of each iteration of the for loop of lines 2�4,
A[j] = min {A[k] : j ≤ k ≤ n} and the subarray A[j . . n] is a permuta-
tion of the values that were in A[j . . n] at the time that the loop started.

Initialization: Initially, j = n, and the subarray A[j . . n] consists of single
element A[n]. The loop invariant trivially holds.

Maintenance: Consider an iteration for a given value of j . By the loop in-
variant, A[j] is the smallest value in A[j . . n]. Lines 3�4 exchange A[j]
and A[j − 1] if A[j] is less than A[j − 1], and so A[j − 1] will be the
smallest value in A[j − 1 . . n] afterward. Since the only change to the sub-
array A[j − 1 . . n] is this possible exchange, and the subarray A[j . . n] is
a permutation of the values that were in A[j . . n] at the time that the loop
started, we see that A[j − 1 . . n] is a permutation of the values that were in
A[j − 1 . . n] at the time that the loop started. Decrementing j for the next
iteration maintains the invariant.

Termination: The loop terminates when j reaches i . By the statement of the
loop invariant, A[i] = min {A[k] : i ≤ k ≤ n} and A[i . . n] is a permutation
of the values that were in A[i . . n] at the time that the loop started.

c. Loop invariant: At the start of each iteration of the for loop of lines 1�4,
the subarray A[1 . . i−1] consists of the i−1 smallest values originally in
A[1 . . n], in sorted order, and A[i . . n] consists of the n− i + 1 remaining
values originally in A[1 . . n].

Initialization: Before the Þrst iteration of the loop, i = 1. The subarray
A[1 . . i − 1] is empty, and so the loop invariant vacuously holds.

Maintenance: Consider an iteration for a given value of i . By the loop invari-
ant, A[1 . . i−1] consists of the i smallest values in A[1 . . n], in sorted order.
Part (b) showed that after executing the for loop of lines 2�4, A[i] is the
smallest value in A[i . . n], and so A[1 . . i] is now the i smallest values orig-
inally in A[1 . . n], in sorted order. Moreover, since the for loop of lines 2�4
permutes A[i . . n], the subarray A[i + 1 . . n] consists of the n− i remaining
values originally in A[1 . . n].

Termination: The for loop of lines 1�4 terminates when i = n + 1, so that
i − 1 = n. By the statement of the loop invariant, A[1 . . i − 1] is the entire
array A[1 . . n], and it consists of the original array A[1 . . n], in sorted order.

Note: We have received requests to change the upper bound of the outer for
loop of lines 1�4 to length[A] − 1. That change would also result in a correct
algorithm. The loop would terminate when i = n, so that according to the loop
invariant, A[1 . . n − 1] would consist of the n − 1 smallest values originally
in A[1 . . n], in sorted order, and A[n] would contain the remaining element,
which must be the largest in A[1 . . n]. Therefore, A[1 . . n] would be sorted.

Solutions for Chapter 2: Getting Started 2-21

In the original pseudocode, the last iteration of the outer for loop results in no
iterations of the inner for loop of lines 1�4. With the upper bound for i set to
length[A]−1, the last iteration of outer loop would result in one iteration of the
inner loop. Either bound, length[A] or length[A]−1, yields a correct algorithm.

d. The running time depends on the number of iterations of the for loop of
lines 2�4. For a given value of i , this loop makes n − i iterations, and i takes
on the values 1, 2, . . . , n. The total number of iterations, therefore, is

n∑
i=1

(n − i) =
n∑

i=1

n −
n∑

i=1

i

= n2 − n(n + 1)

2

= n2 − n2

2
− n

2

= n2

2
− n

2
.

Thus, the running time of bubblesort is �(n2) in all cases. The worst-case
running time is the same as that of insertion sort.

Solution to Problem 2-4

a. The inversions are (1, 5), (2, 5), (3, 4), (3, 5), (4, 5). (Remember that inver-
sions are speciÞed by indices rather than by the values in the array.)

b. The array with elements from {1, 2, . . . , n} with the most inversions is 〈n,

n − 1, n − 2, . . . , 2, 1〉. For all 1 ≤ i < j ≤ n, there is an inversion (i, j). The
number of such inversions is

(n
2

) = n(n − 1)/2.

c. Suppose that the array A starts out with an inversion (k, j). Then k < j and
A[k] > A[j]. At the time that the outer for loop of lines 1�8 sets key ← A[j],
the value that started in A[k] is still somewhere to the left of A[j]. That is,
it�s in A[i], where 1 ≤ i < j , and so the inversion has become (i, j). Some
iteration of the while loop of lines 5�7 moves A[i] one position to the right.
Line 8 will eventually drop key to the left of this element, thus eliminating the
inversion. Because line 5 moves only elements that are less than key, it moves
only elements that correspond to inversions. In other words, each iteration of
the while loop of lines 5�7 corresponds to the elimination of one inversion.

d. We follow the hint and modify merge sort to count the number of inversions in
�(n lg n) time.

To start, let us deÞne a merge-inversion as a situation within the execution of
merge sort in which the MERGE procedure, after copying A[p . . q] to L and
A[q + 1 . . r] to R, has values x in L and y in R such that x > y. Consider
an inversion (i, j), and let x = A[i] and y = A[j], so that i < j and x > y.
We claim that if we were to run merge sort, there would be exactly one merge-
inversion involving x and y. To see why, observe that the only way in which ar-
ray elements change their positions is within the MERGE procedure. Moreover,

2-22 Solutions for Chapter 2: Getting Started

since MERGE keeps elements within L in the same relative order to each other,
and correspondingly for R, the only way in which two elements can change
their ordering relative to each other is for the greater one to appear in L and the
lesser one to appear in R. Thus, there is at least one merge-inversion involving
x and y. To see that there is exactly one such merge-inversion, observe that
after any call of MERGE that involves both x and y, they are in the same sorted
subarray and will therefore both appear in L or both appear in R in any given
call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-inversion. In fact, the
correspondence between inversions and merge-inversions is one-to-one. Sup-
pose we have a merge-inversion involving values x and y, where x originally
was A[i] and y was originally A[j]. Since we have a merge-inversion, x > y.
And since x is in L and y is in R, x must be within a subarray preceding the
subarray containing y. Therefore x started out in a position i preceding y�s
original position j , and so (i, j) is an inversion.

Having shown a one-to-one correspondence between inversions and merge-
inversions, it sufÞces for us to count merge-inversions.

Consider a merge-inversion involving y in R. Let z be the smallest value in L
that is greater than y. At some point during the merging process, z and y will
be the �exposed� values in L and R, i.e., we will have z = L[i] and y = R[j]
in line 13 of MERGE. At that time, there will be merge-inversions involving y
and L[i], L[i + 1], L[i + 2], . . . , L[n1], and these n1 − i + 1 merge-inversions
will be the only ones involving y. Therefore, we need to detect the Þrst time
that z and y become exposed during the MERGE procedure and add the value
of n1 − i + 1 at that time to our total count of merge-inversions.

The following pseudocode, modeled on merge sort, works as we have just de-
scribed. It also sorts the array A.

COUNT-INVERSIONS(A, p, r)

inversions ← 0
if p < r
then q ← 	(p + r)/2

inversions ← inversions+COUNT-INVERSIONS(A, p, q)

inversions ← inversions+COUNT-INVERSIONS(A, q + 1, r)

inversions ← inversions+MERGE-INVERSIONS(A, p, q, r)

return inversions

Solutions for Chapter 2: Getting Started 2-23

MERGE-INVERSIONS(A, p, q, r)

n1 ← q − p + 1
n2 ← r − q
create arrays L[1 . . n1 + 1] and R[1 . . n2 + 1]
for i ← 1 to n1

do L[i] ← A[p + i − 1]
for j ← 1 to n2

do R[j] ← A[q + j]
L[n1 + 1] ←∞
R[n2 + 1] ←∞
i ← 1
j ← 1
inversions ← 0
counted ← FALSE

for k ← p to r
do if counted = FALSE and R[j] < L[i]

then inversions ← inversions+n1 − i + 1
counted ← TRUE

if L[i] ≤ R[j]
then A[k] ← L[i]

i ← i + 1
else A[k] ← R[j]

j ← j + 1
counted ← FALSE

return inversions

The initial call is COUNT-INVERSIONS(A, 1, n).

In MERGE-INVERSIONS, the boolean variable counted indicates whether we
have counted the merge-inversions involving R[j]. We count them the Þrst time
that both R[j] is exposed and a value greater than R[j] becomes exposed in the
L array. We set counted to FALSE upon each time that a new value becomes
exposed in R. We don�t have to worry about merge-inversions involving the
sentinel ∞ in R, since no value in L will be greater than ∞.

Since we have added only a constant amount of additional work to each pro-
cedure call and to each iteration of the last for loop of the merging procedure,
the total running time of the above pseudocode is the same as for merge sort:
�(n lg n).

Lecture Notes for Chapter 3:
Growth of Functions

Chapter 3 overview

• A way to describe behavior of functions in the limit. We�re studying asymptotic
efÞciency.

• Describe growth of functions.
• Focus on what�s important by abstracting away low-order terms and constant

factors.
• How we indicate running times of algorithms.
• A way to compare �sizes� of functions:

O ≈ ≤
� ≈ ≥
� ≈ =
o ≈ <

ω ≈ >

Asymptotic notation

O-notation

O(g(n)) = { f (n) : there exist positive constants c and n0 such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0} .

n0
n

f(n)

cg(n)

g(n) is an asymptotic upper bound for f (n).

If f (n) ∈ O(g(n)), we write f (n) = O(g(n)) (will precisely explain this soon).

3-2 Lecture Notes for Chapter 3: Growth of Functions

Example: 2n2 = O(n3), with c = 1 and n0 = 2.

Examples of functions in O(n2):

n2

n2 + n
n2 + 1000n
1000n2 + 1000n
Also,
n
n/1000
n1.99999

n2/ lg lg lg n

�-notation

�(g(n)) = { f (n) : there exist positive constants c and n0 such that
0 ≤ cg(n) ≤ f (n) for all n ≥ n0} .

n0
n

f(n)

cg(n)

g(n) is an asymptotic lower bound for f (n).

Example:
√

n = �(lg n), with c = 1 and n0 = 16.

Examples of functions in �(n2):

n2

n2 + n
n2 − n
1000n2 + 1000n
1000n2 − 1000n
Also,
n3

n2.00001

n2 lg lg lg n
22n

�-notation

�(g(n)) = { f (n) : there exist positive constants c1, c2, and n0 such that
0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0} .

Lecture Notes for Chapter 3: Growth of Functions 3-3

n0
n

f(n)

c1g(n)

c2g(n)

g(n) is an asymptotically tight bound for f (n).

Example: n2/2− 2n = �(n2), with c1 = 1/4, c2 = 1/2, and n0 = 8.

Theorem
f (n) = �(g(n)) if and only if f = O(g(n)) and f = �(g(n)) .

Leading constants and low-order terms don�t matter.

Asymptotic notation in equations

When on right-hand side: O(n2) stands for some anonymous function in the set
O(n2).

2n2+3n+1 = 2n2+�(n) means 2n2+3n+1 = 2n2+ f (n) for some f (n) ∈ �(n).
In particular, f (n) = 3n + 1.

By the way, we interpret # of anonymous functions as = # of times the asymptotic
notation appears:

n∑
i=1

O(i) OK: 1 anonymous function

O(1)+ O(2)+ · · · + O(n) not OK: n hidden constants
⇒ no clean interpretation

When on left-hand side: No matter how the anonymous functions are chosen on
the left-hand side, there is a way to choose the anonymous functions on the right-
hand side to make the equation valid.

Interpret 2n2 + �(n) = �(n2) as meaning for all functions f (n) ∈ �(n), there
exists a function g(n) ∈ �(n2) such that 2n2 + f (n) = g(n).

Can chain together:
2n2 + 3n + 1 = 2n2 +�(n)

= �(n2) .

Interpretation:

• First equation: There exists f (n) ∈ �(n) such that 2n2+3n+1 = 2n2+ f (n).
• Second equation: For all g(n) ∈ �(n) (such as the f (n) used to make the Þrst

equation hold), there exists h(n) ∈ �(n2) such that 2n2 + g(n) = h(n).

3-4 Lecture Notes for Chapter 3: Growth of Functions

o-notation

o(g(n)) = { f (n) : for all constants c > 0, there exists a constant
n0 > 0 such that 0 ≤ f (n) < cg(n) for all n ≥ n0} .

Another view, probably easier to use: lim
n→∞

f (n)

g(n)
= 0.

n1.9999 = o(n2)

n2/ lg n = o(n2)

n2 �= o(n2) (just like 2 �< 2)
n2/1000 �= o(n2)

ω-notation

ω(g(n)) = { f (n) : for all constants c > 0, there exists a constant
n0 > 0 such that 0 ≤ cg(n) < f (n) for all n ≥ n0} .

Another view, again, probably easier to use: lim
n→∞

f (n)

g(n)
= ∞.

n2.0001 = ω(n2)

n2 lg n = ω(n2)

n2 �= ω(n2)

Comparisons of functions

Relational properties:

Transitivity:
f (n) = �(g(n)) and g(n) = �(h(n))⇒ f (n) = �(h(n)).
Same for O,�, o, and ω.

Reßexivity:
f (n) = �(f (n)).
Same for O and �.

Symmetry:
f (n) = �(g(n)) if and only if g(n) = �(f (n)).

Transpose symmetry:
f (n) = O(g(n)) if and only if g(n) = �(f (n)).
f (n) = o(g(n)) if and only if g(n) = ω(f (n)).

Comparisons:

• f (n) is asymptotically smaller than g(n) if f (n) = o(g(n)).
• f (n) is asymptotically larger than g(n) if f (n) = ω(g(n)).

No trichotomy. Although intuitively, we can liken O to ≤, � to ≥, etc., unlike
real numbers, where a < b, a = b, or a > b, we might not be able to compare
functions.

Example: n1+sin n and n, since 1+ sin n oscillates between 0 and 2.

Lecture Notes for Chapter 3: Growth of Functions 3-5

Standard notations and common functions

[You probably do not want to use lecture time going over all the deÞnitions and
properties given in Section 3.2, but it might be worth spending a few minutes of
lecture time on some of the following.]

Monotonicity

• f (n) is monotonically increasing if m ≤ n ⇒ f (m) ≤ f (n).
• f (n) is monotonically decreasing if m ≥ n ⇒ f (m) ≥ f (n).
• f (n) is strictly increasing if m < n ⇒ f (m) < f (n).
• f (n) is strictly decreasing if m > n ⇒ f (m) > f (n).

Exponentials

Useful identities:

a−1 = 1/a ,

(am)n = amn ,

aman = am+n .

Can relate rates of growth of polynomials and exponentials: for all real constants
a and b such that a > 1,

lim
n→∞

nb

an
= 0 ,

which implies that nb = o(an).

A suprisingly useful inequality: for all real x ,

ex ≥ 1+ x .

As x gets closer to 0, ex gets closer to 1+ x .

Logarithms

Notations:

lg n = log2 n (binary logarithm) ,

ln n = loge n (natural logarithm) ,

lgk n = (lg n)k (exponentiation) ,

lg lg n = lg(lg n) (composition) .

Logarithm functions apply only to the next term in the formula, so that lg n + k
means (lg n)+ k, and not lg(n + k).

In the expression logb a:

• If we hold b constant, then the expression is strictly increasing as a increases.

3-6 Lecture Notes for Chapter 3: Growth of Functions

• If we hold a constant, then the expression is strictly decreasing as b increases.

Useful identities for all real a > 0, b > 0, c > 0, and n, and where logarithm bases
are not 1:

a = blogb a ,

logc(ab) = logc a + logc b ,

logb an = n logb a ,

logb a = logc a

logc b
,

logb(1/a) = − logb a ,

logb a = 1

loga b
,

alogb c = clogb a .

Changing the base of a logarithm from one constant to another only changes the
value by a constant factor, so we usually don�t worry about logarithm bases in
asymptotic notation. Convention is to use lg within asymptotic notation, unless the
base actually matters.

Just as polynomials grow more slowly than exponentials, logarithms grow more

slowly than polynomials. In lim
n→∞

nb

an
= 0, substitute lg n for n and 2a for a:

lim
n→∞

lgb n

(2a)lg n
= lim

n→∞
lgb n

na
= 0 ,

implying that lgb n = o(na).

Factorials

n! = 1 · 2 · 3 · n. Special case: 0! = 1.

Can use Stirling�s approximation,

n! = √
2πn

(n

e

)n
(

1+�

(
1

n

))
,

to derive that lg(n!) = �(n lg n).

Solutions for Chapter 3:
Growth of Functions

Solution to Exercise 3.1-1

First, let�s clarify what the function max(f (n), g(n)) is. Let�s deÞne the function
h(n) = max(f (n), g(n)). Then

h(n) =
{

f (n) if f (n) ≥ g(n) ,

g(n) if f (n) < g(n) .

Since f (n) and g(n) are asymptotically nonnegative, there exists n0 such that
f (n) ≥ 0 and g(n) ≥ 0 for all n ≥ n0. Thus for n ≥ n0, f (n)+ g(n) ≥ f (n) ≥ 0
and f (n)+g(n) ≥ g(n) ≥ 0. Since for any particular n, h(n) is either f (n) or g(n),
we have f (n) + g(n) ≥ h(n) ≥ 0, which shows that h(n) = max(f (n), g(n)) ≤
c2(f (n)+ g(n)) for all n ≥ n0 (with c2 = 1 in the deÞnition of �).

Similarly, since for any particular n, h(n) is the larger of f (n) and g(n), we have for
all n ≥ n0, 0 ≤ f (n) ≤ h(n) and 0 ≤ g(n) ≤ h(n). Adding these two inequalities
yields 0 ≤ f (n) + g(n) ≤ 2h(n), or equivalently 0 ≤ (f (n) + g(n))/2 ≤ h(n),
which shows that h(n) = max(f (n), g(n)) ≥ c1(f (n)+ g(n)) for all n ≥ n0 (with
c1 = 1/2 in the deÞnition of �).

Solution to Exercise 3.1-2

To show that (n + a)b = �(nb), we want to Þnd constants c1, c2, n0 > 0 such that
0 ≤ c1nb ≤ (n + a)b ≤ c2nb for all n ≥ n0.

Note that

n + a ≤ n + |a|
≤ 2n when |a| ≤ n ,

and

n + a ≥ n − |a|
≥ 1

2
n when |a| ≤ 1

2 n .

Thus, when n ≥ 2 |a|,
0 ≤ 1

2
n ≤ n + a ≤ 2n .

3-8 Solutions for Chapter 3: Growth of Functions

Since b > 0, the inequality still holds when all parts are raised to the power b:

0 ≤
(

1

2
n

)b

≤ (n + a)b ≤ (2n)b ,

0 ≤
(

1

2

)b

nb ≤ (n + a)b ≤ 2bnb .

Thus, c1 = (1/2)b, c2 = 2b, and n0 = 2 |a| satisfy the deÞnition.

Solution to Exercise 3.1-3

Let the running time be T (n). T (n) ≥ O(n2) means that T (n) ≥ f (n) for some
function f (n) in the set O(n2). This statement holds for any running time T (n),
since the function g(n) = 0 for all n is in O(n2), and running times are always
nonnegative. Thus, the statement tells us nothing about the running time.

Solution to Exercise 3.1-4

2n+1 = O(2n), but 22n �= O(2n).

To show that 2n+1 = O(2n), we must Þnd constants c, n0 > 0 such that

0 ≤ 2n+1 ≤ c · 2n for all n ≥ n0 .

Since 2n+1 = 2 · 2n for all n, we can satisfy the deÞnition with c = 2 and n0 = 1.

To show that 22n �= O(2n), assume there exist constants c, n0 > 0 such that

0 ≤ 22n ≤ c · 2n for all n ≥ n0 .

Then 22n = 2n · 2n ≤ c · 2n ⇒ 2n ≤ c. But no constant is greater than all 2n , and
so the assumption leads to a contradiction.

Solution to Exercise 3.1-8

�(g(n, m)) = { f (n, m) : there exist positive constants c, n0, and m0

such that 0 ≤ cg(n, m) ≤ f (n, m)

for all n ≥ n0 and m ≥ m0} .

�(g(n, m)) = { f (n, m) : there exist positive constants c1, c2, n0, and m0

such that 0 ≤ c1g(n, m) ≤ f (n, m) ≤ c2g(n, m)

for all n ≥ n0 and m ≥ m0} .

Solutions for Chapter 3: Growth of Functions 3-9

Solution to Exercise 3.2-4

�lg n�! is not polynomially bounded, but �lg lg n�! is.

Proving that a function f (n) is polynomially bounded is equivalent to proving that
lg(f (n)) = O(lg n) for the following reasons.

• If f is polynomially bounded, then there exist constants c, k, n0 such that for
all n ≥ n0, f (n) ≤ cnk . Hence, lg(f (n)) ≤ kc lg n, which, since c and k are
constants, means that lg(f (n)) = O(lg n).

• Similarly, if lg(f (n)) = O(lg n), then f is polynomially bounded.

In the following proofs, we will make use of the following two facts:

1. lg(n!) = �(n lg n) (by equation (3.18)).

2. �lg n� = �(lg n), because

• �lg n� ≥ lg n
• �lg n� < lg n + 1 ≤ 2 lg n for all n ≥ 2

lg(�lg n�!) = �(�lg n� lg �lg n�)
= �(lg n lg lg n)

= ω(lg n) .

Therefore, lg(�lg n�!) �= O(lg n), and so �lg n�! is not polynomially bounded.

lg(�lg lg n�!) = �(�lg lg n� lg �lg lg n�)
= �(lg lg n lg lg lg n)

= o((lg lg n)2)

= o(lg2(lg n))

= o(lg n) .

The last step above follows from the property that any polylogarithmic function
grows more slowly than any positive polynomial function, i.e., that for constants
a, b > 0, we have lgb n = o(na). Substitute lg n for n, 2 for b, and 1 for a, giving
lg2(lg n) = o(lg n).

Therefore, lg(�lg lg n�!) = O(lg n), and so �lg lg n�! is polynomially bounded.

Solution to Problem 3-3

a. Here is the ordering, where functions on the same line are in the same equiva-
lence class, and those higher on the page are � of those below them:

3-10 Solutions for Chapter 3: Growth of Functions

22n+1

22n

(n + 1)!
n! see justiÞcation 7
en see justiÞcation 1
n · 2n

2n

(3/2)n

(lg n)lg n = nlg lg n see identity 1
(lg n)! see justiÞcations 2, 8
n3

n2 = 4lg n see identity 2
n lg n and lg(n!) see justiÞcation 6
n = 2lg n see identity 3
(
√

2)lg n(= √
n) see identity 6, justiÞcation 3

2
√

2 lg n see identity 5, justiÞcation 4
lg2 n
ln n√

lg n
ln ln n see justiÞcation 5
2lg∗ n

lg∗ n and lg∗(lg n) see identity 7
lg(lg∗)n
n1/ lg n(= 2) and 1 see identity 4

Much of the ranking is based on the following properties:

• Exponential functions grow faster than polynomial functions, which grow
faster than polylogarithmic functions.

• The base of a logarithm doesn�t matter asymptotically, but the base of an
exponential and the degree of a polynomial do matter.

We have the following identities:

1. (lg n)lg n = nlg lg n because alogb c = clogb a.
2. 4lg n = n2 because alogb c = clogb a.
3. 2lg n = n.
4. 2 = n1/ lg n by raising identity 3 to the power 1/ lg n.

5. 2
√

2 lg n = n
√

2/ lg n by raising identity 4 to the power
√

2 lg n.

6.
(√

2
)lg n = √

n because
(√

2
)lg n = 2(1/2) lg n = 2lg

√
n = √

n.
7. lg∗(lg n) = (lg∗ n)− 1.

The following justiÞcations explain some of the rankings:

1. en = 2n(e/2)n = ω(n2n), since (e/2)n = ω(n).
2. (lg n)! = ω(n3) by taking logs: lg(lg n)! = �(lg n lg lg n) by Stirling�s

approximation, lg(n3) = 3 lg n. lg lg n = ω(3).

Solutions for Chapter 3: Growth of Functions 3-11

3. (
√

2)lg n = ω
(
2
√

2 lg n
)

by taking logs: lg(
√

2)lg n = (1/2) lg n, lg 2
√

2 lg n =√
2 lg n. (1/2) lg n = ω(

√
2 lg n).

4. 2
√

2 lg n = ω(lg2 n) by taking logs: lg 2
√

2 lg n = √2 lg n, lg lg2 n = 2 lg lg n.√
2 lg n = ω(2 lg lg n).

5. ln ln n = ω(2lg∗ n) by taking logs: lg 2lg∗ n = lg∗ n. lg ln ln n = ω(lg∗ n).
6. lg(n!) = �(n lg n) (equation (3.18)).
7. n! = �(nn+1/2e−n) by dropping constants and low-order terms in equa-

tion (3.17).
8. (lg n)! = �((lg n)lg n+1/2e− lg n) by substituting lg n for n in the previous

justiÞcation. (lg n)! = �((lg n)lg n+1/2n− lg e) because alogb c = clogb a .

b. The following f (n) is nonnegative, and for all functions gi (n) in part (a), f (n)

is neither O(gi (n)) nor �(gi(n)).

f (n) =
{

22n+2
if n is even ,

0 if n is odd .

Lecture Notes for Chapter 4:
Recurrences

Chapter 4 overview

A recurrence is a function is deÞned in terms of

• one or more base cases, and
• itself, with smaller arguments.

Examples:

• T (n) =
{

1 if n = 1 ,

T (n − 1)+ 1 if n > 1 .

Solution: T (n) = n.

• T (n) =
{

1 if n = 1 ,

2T (n/2)+ n if n ≥ 1 .

Solution: T (n) = n lg n + n.

• T (n) =
{

0 if n = 2 ,

T (
√

n)+ 1 if n > 2 .

Solution: T (n) = lg lg n.

• T (n) =
{

1 if n = 1 ,

T (n/3)+ T (2n/3)+ n if n > 1 .

Solution: T (n) = �(n lg n).

[The notes for this chapter are fairly brief because we teach recurrences in much
greater detail in a separate discrete math course.]

Many technical issues:

• Floors and ceilings

[Floors and ceilings can easily be removed and don�t affect the solution to the
recurrence. They are better left to a discrete math course.]

• Exact vs. asymptotic functions
• Boundary conditions

In algorithm analysis, we usually express both the recurrence and its solution using
asymptotic notation.

4-2 Lecture Notes for Chapter 4: Recurrences

• Example: T (n) = 2T (n/2)+�(n), with solution T (n) = �(n lg n).
• The boundary conditions are usually expressed as �T (n) = O(1) for sufÞ-

ciently small n.�
• When we desire an exact, rather than an asymptotic, solution, we need to deal

with boundary conditions.
• In practice, we just use asymptotics most of the time, and we ignore boundary

conditions.

[In my course, there are only two acceptable ways of solving recurrences: the
substitution method and the master method. Unless the recursion tree is carefully
accounted for, I do not accept it as a proof of a solution, though I certainly accept
a recursion tree as a way to generate a guess for substitution method. You may
choose to allow recursion trees as proofs in your course, in which case some of the
substitution proofs in the solutions for this chapter become recursion trees.

I also never use the iteration method, which had appeared in the Þrst edition of
Introduction to Algorithms. I Þnd that it is too easy to make an error in paren-
thesization, and that recursion trees give a better intuitive idea than iterating the
recurrence of how the recurrence progresses.]

Substitution method

1. Guess the solution.

2. Use induction to Þnd the constants and show that the solution works.

Example:

T (n) =
{

1 if n = 1 ,

2T (n/2)+ n if n > 1 .

1. Guess: T (n) = n lg n + n. [Here, we have a recurrence with an exact func-
tion, rather than asymptotic notation, and the solution is also exact rather than
asymptotic. We�ll have to check boundary conditions and the base case.]

2. Induction:

Basis: n = 1 ⇒ n lg n + n = 1 = T (n)

Inductive step: Inductive hypothesis is that T (k) = k lg k + k for all k < n.
We�ll use this inductive hypothesis for T (n/2).

T (n) = 2T
(n

2

)
+ n

= 2
(n

2
lg

n

2
+ n

2

)
+ n (by inductive hypothesis)

= n lg
n

2
+ n + n

= n(lg n − lg 2)+ n + n

= n lg n − n + n + n

= n lg n + n .

Lecture Notes for Chapter 4: Recurrences 4-3

Generally, we use asymptotic notation:
• We would write T (n) = 2T (n/2)+�(n).
• We assume T (n) = O(1) for sufÞciently small n.
• We express the solution by asymptotic notation: T (n) = �(n lg n).
• We don�t worry about boundary cases, nor do we show base cases in the substi-

tution proof.

• T (n) is always constant for any constant n.
• Since we are ultimately interested in an asymptotic solution to a recurrence,

it will always be possible to choose base cases that work.
• When we want an asymptotic solution to a recurrence, we don�t worry about

the base cases in our proofs.
• When we want an exact solution, then we have to deal with base cases.

For the substitution method:
• Name the constant in the additive term.
• Show the upper (O) and lower (�) bounds separately. Might need to use dif-

ferent constants for each.

Example: T (n) = 2T (n/2)+�(n). If we want to show an upper bound of T (n) =
2T (n/2)+ O(n), we write T (n) ≤ 2T (n/2)+ cn for some positive constant c.

1. Upper bound:

Guess: T (n) ≤ dn lg n for some positive constant d . We are given c in the
recurrence, and we get to choose d as any positive constant. It�s OK for d to
depend on c.

Substitution:
T (n) ≤ 2T (n/2)+ cn

= 2
(

d
n

2
lg

n

2

)
+ cn

= dn lg
n

2
+ cn

= dn lg n − dn + cn

≤ dn lg n if −dn + cn ≤ 0 ,

d ≥ c

Therefore, T (n) = O(n lg n).

2. Lower bound: Write T (n) ≥ 2T (n/2)+ cn for some positive constant c.

Guess: T (n) ≥ dn lg n for some positive constant d .

Substitution:
T (n) ≥ 2T (n/2)+ cn

= 2
(

d
n

2
lg

n

2

)
+ cn

= dn lg
n

2
+ cn

= dn lg n − dn + cn

≥ dn lg n if −dn + cn ≥ 0 ,

d ≤ c

4-4 Lecture Notes for Chapter 4: Recurrences

Therefore, T (n) = �(n lg n).

Therefore, T (n) = �(n lg n). [For this particular recurrence, we can use d = c for
both the upper-bound and lower-bound proofs. That won�t always be the case.]

Make sure you show the same exact form when doing a substitution proof.

Consider the recurrence

T (n) = 8T (n/2)+�(n2) .

For an upper bound:

T (n) ≤ 8T (n/2)+ cn2 .

Guess: T (n) ≤ dn3.

T (n) ≤ 8d(n/2)3 + cn2

= 8d(n3/8)+ cn2

= dn3 + cn2

�≤ dn3 doesn�t work!

Remedy: Subtract off a lower-order term.

Guess: T (n) ≤ dn3 − d ′n2.

T (n) ≤ 8(d(n/2)3 − d ′(n/2)2)+ cn2

= 8d(n3/8)− 8d ′(n2/4)+ cn2

= dn3 − 2d ′n2 + cn2

= dn3 − d ′n2 − d ′n2 + cn2

≤ dn3 − d ′n2 if −d ′n2 + cn2 ≤ 0 ,

d ′ ≥ c

Be careful when using asymptotic notation.

The false proof for the recurrence T (n) = 4T (n/4)+ n, that T (n) = O(n):

T (n) ≤ 4(c(n/4))+ n

≤ cn + n

= O(n) wrong!

Because we haven�t proven the exact form of our inductive hypothesis (which is
that T (n) ≤ cn), this proof is false.

Recursion trees

Use to generate a guess. Then verify by substitution method.

Example: T (n) = T (n/3)+T (2n/3)+�(n). For upper bound, rewrite as T (n) ≤
T (n/3)+ T (2n/3)+ cn; for lower bound, as T (n) ≥ T (n/3)+ T (2n/3)+ cn.

By summing across each level, the recursion tree shows the cost at each level of
recursion (minus the costs of recursive calls, which appear in subtrees):

Lecture Notes for Chapter 4: Recurrences 4-5

�

cncn

cn

cn

c(n/3) c(2n/3)

c(n/9) c(2n/9) c(2n/9) c(4n/9)

leftmost branch peters
out after log3 n levels

rightmost branch peters
out after log3/2 n levels

• There are log3 n full levels, and after log3/2 n levels, the problem size is down
to 1.

• Each level contributes ≤ cn.
• Lower bound guess: ≥ dn log3 n = �(n lg n) for some positive constant d .
• Upper bound guess: ≤ dn log3/2 n = O(n lg n) for some positive constant d .
• Then prove by substitution.

1. Upper bound:

Guess: T (n) ≤ dn lg n.

Substitution:
T (n) ≤ T (n/3)+ T (2n/3)+ cn

≤ d(n/3) lg(n/3)+ d(2n/3) lg(2n/3)+ cn

= (d(n/3) lg n − d(n/3) lg 3)

+ (d(2n/3) lg n − d(2n/3) lg(3/2))+ cn

= dn lg n − d((n/3) lg 3+ (2n/3) lg(3/2))+ cn

= dn lg n − d((n/3) lg 3+ (2n/3) lg 3− (2n/3) lg 2)+ cn

= dn lg n − dn(lg 3− 2/3)+ cn

≤ dn lg n if −dn(lg 3− 2/3)+ cn ≤ 0 ,

d ≥ c

lg 3− 2/3
.

Therefore, T (n) = O(n lg n).

Note: Make sure that the symbolic constants used in the recurrence (e.g., c) and
the guess (e.g., d) are different.

2. Lower bound:

Guess: T (n) ≥ dn lg n.

Substitution: Same as for the upper bound, but replacing ≤ by ≥. End up
needing

0 < d ≤ c

lg 3− 2/3
.

Therefore, T (n) = �(n lg n).

Since T (n) = O(n lg n) and T (n) = �(n lg n), we conclude that T (n) =
�(n lg n).

4-6 Lecture Notes for Chapter 4: Recurrences

Master method

Used for many divide-and-conquer recurrences of the form

T (n) = aT (n/b)+ f (n) ,

where a ≥ 1, b > 1, and f (n) > 0.

Based on the master theorem (Theorem 4.1).

Compare nlogb a vs. f (n):

Case 1: f (n) = O(nlogb a−ε) for some constant ε > 0.
(f (n) is polynomially smaller than nlogb a.)
Solution: T (n) = �(nlogb a).
(Intuitively: cost is dominated by leaves.)

Case 2: f (n) = �(nlogb a lgk n), where k ≥ 0.
[This formulation of Case 2 is more general than in Theorem 4.1, and it is given
in Exercise 4.4-2.]
(f (n) is within a polylog factor of nlogb a , but not smaller.)
Solution: T (n) = �(nlogb a lgk+1 n).
(Intuitively: cost is nlogb a lgk n at each level, and there are �(lg n) levels.)
Simple case: k = 0 ⇒ f (n) = �(nlogb a)⇒ T (n) = �(nlogb a lg n).

Case 3: f (n) = �(nlogb a+ε) for some constant ε > 0 and f (n) satisÞes the regu-
larity condition a f (n/b) ≤ c f (n) for some constant c < 1 and all sufÞciently
large n.
(f (n) is polynomially greater than nlogb a .)
Solution: T (n) = �(f (n)).
(Intuitively: cost is dominated by root.)

What�s with the Case 3 regularity condition?

• Generally not a problem.
• It always holds whenever f (n) = nk and f (n) = �(nlogb a+ε) for constant

ε > 0. [Proving this makes a nice homework exercise. See below.] So you
don�t need to check it when f (n) is a polynomial.

[Here�s a proof that the regularity condition holds when f (n) = nk and f (n) =
�(nlogb a+ε) for constant ε > 0.

Since f (n) = �(nlogb a+ε) and f (n) = nk , we have that k > logb a. Using a
base of b and treating both sides as exponents, we have bk > blogb a = a, and so
a/bk < 1. Since a, b, and k are constants, if we let c = a/bk , then c is a constant
strictly less than 1. We have that a f (n/b) = a(n/b)k = (a/bk)nk = c f (n), and so
the regularity condition is satisÞed.]

Examples:

• T (n) = 5T (n/2)+�(n2)

nlog2 5 vs. n2

Since log2 5− ε = 2 for some constant ε > 0, use Case 1 ⇒ T (n) = �(nlg 5)

Lecture Notes for Chapter 4: Recurrences 4-7

• T (n) = 27T (n/3)+�(n3 lg n)

nlog3 27 = n3 vs. n3 lg n
Use Case 2 with k = 1 ⇒ T (n) = �(n3 lg2 n)

• T (n) = 5T (n/2)+�(n3)

nlog2 5 vs. n3

Now lg 5+ ε = 3 for some constant ε > 0
Check regularity condition (don�t really need to since f (n) is a polynomial):
a f (n/b) = 5(n/2)3 = 5n3/8 ≤ cn3 for c = 5/8 < 1
Use Case 3 ⇒ T (n) = �(n3)

• T (n) = 27T (n/3)+�(n3/ lg n)

nlog3 27 = n3 vs. n3/ lg n = n3 lg−1 n �= �(n3 lgk n) for any k ≥ 0.
Cannot use the master method.

[We don�t prove the master theorem in our algorithms course. We sometimes prove
a simpliÞed version for recurrences of the form T (n) = aT (n/b)+nc. Section 4.4
of the text has the full proof of the master theorem.]

Solutions for Chapter 4:
Recurrences

Solution to Exercise 4.2-2

The shortest path from the root to a leaf in the recursion tree is n → (1/3)n →
(1/3)2n → · · · → 1. Since (1/3)kn = 1 when k = log3 n, the height of the
part of the tree in which every node has two children is log3 n. Since the values at
each of these levels of the tree add up to n, the solution to the recurrence is at least
n log3 n = �(n lg n).

Solution to Exercise 4.2-5

T (n) = T (αn)+ T ((1− α)n)+ n

We saw the solution to the recurrence T (n) = T (n/3)+ T (2n/3)+ cn in the text.
This recurrence can be similarly solved.

Without loss of generality, let α ≥ 1−α, so that 0 < 1−α ≤ 1/2 and 1/2 ≤ α < 1.

�

�

log1/(1−α) n log1/α n

cn

cn

cn

cn

Total: O(n lg n)

cαn c(1− α)n

cα2n cα(1− α)ncα(1− α)n c(1− α)2n

The recursion tree is full for log1/(1−α) n levels, each contributing cn, so we guess
�(n log1/(1−α) n) = �(n lg n). It has log1/α n levels, each contributing ≤ cn, so
we guess O(n log1/α n) = O(n lg n).

Solutions for Chapter 4: Recurrences 4-9

Now we show that T (n) = �(n lg n) by substitution. To prove the upper bound,
we need to show that T (n) ≤ dn lg n for a suitable constant d > 0.

T (n) = T (αn)+ T ((1− α)n)+ cn

≤ dαn lg(αn)+ d(1− α)n lg((1− α)n)+ cn

= dαn lg α + dαn lg n + d(1− α)n lg(1− α)+ d(1− α)n lg n + cn

= dn lg n + dn(α lg α + (1− α) lg(1− α))+ cn

≤ dn lg n ,

if dn(α lg α + (1− α) lg(1− α))+ cn ≤ 0. This condition is equivalent to

d(α lg α + (1− α) lg(1− α)) ≤ −c .

Since 1/2 ≤ α < 1 and 0 < 1−α ≤ 1/2, we have that lg α < 0 and lg(1−α) < 0.
Thus, α lg α + (1 − α) lg(1 − α) < 0, so that when we multiply both sides of the
inequality by this factor, we need to reverse the inequality:

d ≥ −c

α lg α + (1− α) lg(1− α)

or

d ≥ c

−α lg α +−(1− α) lg(1− α)
.

The fraction on the right-hand side is a positive constant, and so it sufÞces to pick
any value of d that is greater than or equal to this fraction.

To prove the lower bound, we need to show that T (n) ≥ dn lg n for a suitable
constant d > 0. We can use the same proof as for the upper bound, substituting ≥
for ≤, and we get the requirement that

0 < d ≤ c

−α lg α − (1− α) lg(1− α)
.

Therefore, T (n) = �(n lg n).

Solution to Problem 4-1

Note: In parts (a), (b), and (d) below, we are applying case 3 of the master theorem,
which requires the regularity condition that a f (n/b) ≤ c f (n) for some constant
c < 1. In each of these parts, f (n) has the form nk . The regularity condition is
satisÞed because a f (n/b) = ank/bk = (a/bk)nk = (a/bk) f (n), and in each of
the cases below, a/bk is a constant strictly less than 1.

a. T (n) = 2T (n/2)+ n3 = �(n3). This is a divide-and-conquer recurrence with
a = 2, b = 2, f (n) = n3, and nlogb a = nlog2 2 = n. Since n3 = �(nlog2 2+2)

and a/bk = 2/23 = 1/4 < 1, case 3 of the master theorem applies, and
T (n) = �(n3).

b. T (n) = T (9n/10) + n = �(n). This is a divide-and-conquer recurrence with
a = 1, b = 10/9, f (n) = n, and nlogb a = nlog10/9 1 = n0 = 1. Since n =
�(nlog10/9 1+1) and a/bk = 1/(10/9)1 = 9/10 < 1, case 3 of the master theorem
applies, and T (n) = �(n).

4-10 Solutions for Chapter 4: Recurrences

c. T (n) = 16T (n/4) + n2 = �(n2 lg n). This is another divide-and-conquer
recurrence with a = 16, b = 4, f (n) = n2, and nlogb a = nlog4 16 = n2. Since
n2 = �(nlog4 16), case 2 of the master theorem applies, and T (n) = �(n2 lg n).

d. T (n) = 7T (n/3)+ n2 = �(n2). This is a divide-and-conquer recurrence with
a = 7, b = 3, f (n) = n2, and nlogb a = nlog3 7. Since 1 < log3 7 < 2, we have
that n2 = �(nlog3 7+ε) for some constant ε > 0. We also have a/bk = 7/32 =
7/9 < 1, so that case 3 of the master theorem applies, and T (n) = �(n2).

e. T (n) = 7T (n/2) + n2 = O(nlg 7). This is a divide-and-conquer recurrence
with a = 7, b = 2, f (n) = n2, and nlogb a = nlog2 7. Since 2 < lg 7 < 3, we
have that n2 = O(nlog2 7−ε) for some constant ε > 0. Thus, case 1 of the master
theorem applies, and T (n) = �(nlg 7).

f. T (n) = 2T (n/4) + √
n = �(

√
n lg n). This is another divide-and-conquer

recurrence with a = 2, b = 4, f (n) = √
n, and nlogb a = nlog4 2 = √

n.
Since

√
n = �(nlog4 2), case 2 of the master theorem applies, and T (n) =

�(
√

n lg n).

g. T (n) = T (n − 1)+ n

Using the recursion tree shown below, we get a guess of T (n) = �(n2).

n-1

n-2

n

1

n

n-1

n-2

1

2

n

2

...

�(n2)

First, we prove the T (n) = �(n2) part by induction. The inductive hypothesis
is T (n) ≥ cn2 for some constant c > 0.

T (n) = T (n − 1)+ n

≥ c(n − 1)2 + n

= cn2 − 2cn + c + n

≥ cn2

if −2cn + n + c ≥ 0 or, equivalently, n(1− 2c)+ c ≥ 0. This condition holds
when n ≥ 0 and 0 < c ≤ 1/2.

For the upper bound, T (n) = O(n2), we use the inductive hypothesis that
T (n) ≤ cn2 for some constant c > 0. By a similar derivation, we get that

Solutions for Chapter 4: Recurrences 4-11

T (n) ≤ cn2 if −2cn + n + c ≤ 0 or, equivalently, n(1 − 2c) + c ≤ 0. This
condition holds for c = 1 and n ≥ 1.

Thus, T (n) = �(n2) and T (n) = O(n2), so we conclude that T (n) = �(n2).

h. T (n) = T (
√

n)+ 1

The easy way to do this is with a change of variables, as on page 66 of
the text. Let m = lg n and S(m) = T (2m). T (2m) = T (2m/2) + 1, so
S(m) = S(m/2)+ 1. Using the master theorem, nlogb a = nlog2 1 = n0 = 1
and f (n) = 1. Since 1 = �(1), case 2 applies and S(m) = �(lg m). There-
fore, T (n) = �(lg lg n).

Solution to Problem 4-4

[This problem is solved only for parts a, c, e, f, g, h, and i.]

a. T (n) = 3T (n/2)+ n lg n

We have f (n) = n lg n and nlogb a = nlg 3 ≈ n1.585. Since n lg n = O(nlg 3−ε)

for any 0 < ε ≤ 0.58, by case 1 of the master theorem, we have T (n) =
�(nlg 3).

c. T (n) = 4T (n/2)+ n2√n

We have f (n) = n2√n = n5/2 and nlogb a = nlog2 4 = nlg 2. Since n5/2 =
�(nlg 2+3/2), we look at the regularity condition in case 3 of the master theorem.
We have a f (n/b) = 4(n/2)2√n/2 = n5/2/

√
2 ≤ cn5/2 for 1/

√
2 ≤ c < 1.

Case 3 applies, and we have T (n) = �(n2√n).

e. T (n) = 2T (n/2)+ n/ lg n

We can get a guess by means of a recursion tree:

�

�

lg n

n

lg n

n

lg n

n/2

lg(n/2)

n/2

lg(n/2)

n/4

lg(n/4)

n/4

lg(n/4)

n/4

lg(n/4)

n/4

lg(n/4)

n

lg n − 1

n

lg n − 2

lg n−1∑
i=0

n

lg n − i
= �(n lg lg n)

We get the sum on each level by observing that at depth i , we have 2i nodes,
each with a numerator of n/2i and a denominator of lg(n/2i) = lg n− i , so that
the cost at depth i is

4-12 Solutions for Chapter 4: Recurrences

2i · n/2i

lg n − i
= n

lg n − i
.

The sum for all levels is
lg n−1∑

i=0

n

lg n − i
= n

lg n∑
i=1

n

i

= n
lg n∑
i=1

1/ i

= n ·�(lg lg n) (by equation (A.7), the harmonic series)

= �(n lg lg n) .

We can use this analysis as a guess that T (n) = �(n lg lg n). If we were to do
a straight substitution proof, it would be rather involved. Instead, we will show
by substitution that T (n) ≤ n(1 + H	lg n
) and T (n) ≥ n · H�lg n�, where Hk

is the kth harmonic number: Hk = 1/1 + 1/2 + 1/3 + · · · + 1/k. We also
deÞne H0 = 0. Since Hk = �(lg k), we have that H	lg n
 = �(lg 	lg n
) =
�(lg lg n) and H�lg n� = �(lg �lg n�) = �(lg lg n). Thus, we will have that
T (n) = �(n lg lg n).

The base case for the proof is for n = 1, and we use T (1) = 1. Here, lg n = 0,
so that lg n = 	lg n
 = �lg n�. Since H0 = 0, we have T (1) = 1 ≤ 1(1 + H0)

and T (1) = 1 ≥ 0 = 1 · H0.

For the upper bound of T (n) ≤ n(1+ H	lg n
), we have

T (n) = 2T (n/2)+ n/ lg n

≤ 2((n/2)(1+ H	lg(n/2)
))+ n/ lg n

= n(1+ H	lg n−1
)+ n/ lg n

= n(1+ H	lg n
−1 + 1/ lg n)

≤ n(1+ H	lg n
−1 + 1/ 	lg n
)
= n(1+ H	lg n
) ,

where the last line follows from the identity Hk = Hk−1 + 1/k.

The upper bound of T (n) ≥ n · H�lg n� is similar:

T (n) = 2T (n/2)+ n/ lg n

≥ 2((n/2) · H�lg(n/2)�)+ n/ lg n

= n · H�lg n−1� + n/ lg n

= n · (H�lg n�−1 + 1/ lg n)

≥ n · (H�lg n�−1 + 1/ �lg n�)
= n · H�lg n� .

Thus, T (n) = �(n lg lg n).

f. T (n) = T (n/2)+ T (n/4)+ T (n/8)+ n

Using the recursion tree shown below, we get a guess of T (n) = �(n).

Solutions for Chapter 4: Recurrences 4-13

n n

log4 n

n
2

n
4

n
4

n
8

n
8

n
8

n
16

n
16

n
16

n
32

n
32

n
64

log8 n

...

n(4+2+1
8) = 7

8 n

n(1
4 + 2

8 + 3
16 + 2

32 + 1
64)

= n 16+16+12+4+1
64

= n 49
64 = 7

8
2
n

log n∑
i=1

(7

8

)i

n = �(n)

We use the substitution method to prove that T (n) = O(n). Our inductive
hypothesis is that T (n) ≤ cn for some constant c > 0. We have

T (n) = T (n/2)+ T (n/4)+ T (n/8)+ n

≤ cn/2+ cn/4+ cn/8+ n

= 7cn/8+ n

= (1+ 7c/8)n

≤ cn if c ≥ 8 .

Therefore, T (n) = O(n).

Showing that T (n) = �(n) is easy:

T (n) = T (n/2)+ T (n/4)+ T (n/8)+ n ≥ n .

Since T (n) = O(n) and T (n) = �(n), we have that T (n) = �(n).

g. T (n) = T (n − 1)+ 1/n

This recurrence corresponds to the harmonic series, so that T (n) = Hn, where
Hn = 1/1+1/2+1/3+· · ·+1/n. For the base case, we have T (1) = 1 = H1.
For the inductive step, we assume that T (n − 1) = Hn−1, and we have

T (n) = T (n − 1)+ 1/n

= Hn−1 + 1/n

= Hn .

Since Hn = �(lg n) by equation (A.7), we have that T (n) = �(lg n).

h. T (n) = T (n − 1)+ lg n

We guess that T (n) = �(n lg n). To prove the upper bound, we will show that
T (n) = O(n lg n). Our inductive hypothesis is that T (n) ≤ cn lg n for some
constant c. We have

4-14 Solutions for Chapter 4: Recurrences

T (n) = T (n − 1)+ lg n

≤ c(n − 1) lg(n − 1)+ lg n

= cn lg(n − 1)− c lg(n − 1)+ lg n

≤ cn lg(n − 1)− c lg(n/2)+ lg n

(since lg(n − 1) ≥ lg(n/2) for n ≥ 2)

= cn lg(n − 1)− c lg n + c + lg n

< cn lg n − c lg n + c + lg n

≤ cn lg n ,

if −c lg n + c + lg n ≤ 0. Equivalently,

−c lg n + c + lg n ≤ 0

c ≤ (c − 1) lg n

lg n ≥ c/(c − 1) .

This works for c = 2 and all n ≥ 4.

To prove the lower bound, we will show that T (n) = �(n lg n). Our inductive
hypothesis is that T (n) ≥ cn lg n + dn for constants c and d . We have

T (n) = T (n − 1)+ lg n

≥ c(n − 1) lg(n − 1)+ d(n − 1)+ lg n

= cn lg(n − 1)− c lg(n − 1)+ dn − d + lg n

≥ cn lg(n/2)− c lg(n − 1)+ dn − d + lg n

(since lg(n − 1) ≥ lg(n/2) for n ≥ 2)

= cn lg n − cn − c lg(n − 1)+ dn − d + lg n

≥ cn lg n ,

if −cn − c lg(n − 1)+ dn − d + lg n ≥ 0. Since

−cn − c lg(n − 1)+ dn − d + lg n >

−cn − c lg(n − 1)+ dn − d + lg(n − 1) ,

it sufÞces to Þnd conditions in which−cn−c lg(n−1)+dn−d+lg(n−1) ≥ 0.
Equivalently,

−cn − c lg(n − 1)+ dn − d + lg(n − 1) ≥ 0

(d − c)n ≥ (c − 1) lg(n − 1)+ d .

This works for c = 1, d = 2, and all n ≥ 2.

Since T (n) = O(n lg n) and T (n) = �(n lg n), we conclude that T (n) =
�(n lg n).

i. T (n) = T (n − 2)+ 2 lg n

We guess that T (n) = �(n lg n). We show the upper bound of T (n) =
O(n lg n) by means of the inductive hypothesis T (n) ≤ cn lg n for some con-
stant c > 0. We have

T (n) = T (n − 2)+ 2 lg n

≤ c(n − 2) lg(n − 2)+ 2 lg n

≤ c(n − 2) lg n + 2 lg n

= (cn − 2c + 2) lg n

Solutions for Chapter 4: Recurrences 4-15

= cn lg n + (2− 2c) lg n

≤ cn lg n if c > 1 .

Therefore, T (n) = O(n lg n).

For the lower bound of T (n) = �(n lg n), we�ll show that T (n) ≥ cn lg n+dn,
for constants c, d > 0 to be chosen. We assume that n ≥ 4, which implies that

1. lg(n − 2) ≥ lg(n/2),
2. n/2 ≥ lg n, and
3. n/2 ≥ 2.

(We�ll use these inequalities as we go along.) We have

T (n) ≥ c(n − 2) lg(n − 2)+ d(n − 2)+ 2 lg n

= cn lg(n − 2)− 2c lg(n − 2)+ dn − 2d + 2 lg n

> cn lg(n − 2)− 2c lg n + dn − 2d + 2 lg n

(since − lg n < − lg(n − 2))

= cn lg(n − 2)− 2(c − 1) lg n + dn − 2d

≥ cn lg(n/2)− 2(c − 1) lg n + dn − 2d (by inequality (1) above)

= cn lg n − cn − 2(c − 1) lg n + dn − 2d

≥ cn lg n ,

if−cn−2(c−1) lg n+dn−2d ≥ 0 or, equivalently, dn ≥ cn+2(c−1) lg n+2d .
Pick any constant c > 1/2, and then pick any constant d such that

d ≥ 2(2c − 1) .

(The requirement that c > 1/2 means that d is positive.) Then

d/2 ≥ 2c − 1 = c + (c − 1) ,

and adding d/2 to both sides, we have

d ≥ c + (c − 1)+ d/2 .

Multiplying by n yields

dn ≥ cn + (c − 1)n + dn/2 ,

and then both multiplying and dividing the middle term by 2 gives

dn ≥ cn + 2(c − 1)n/2+ dn/2 .

Using inequalities (2) and (3) above, we get

dn ≥ cn + 2(c − 1) lg n + 2d ,

which is what we needed to show. Thus T (n) = �(n lg n). Since T (n) =
O(n lg n) and T (n) = �(n lg n), we conclude that T (n) = �(n lg n).

Lecture Notes for Chapter 5:
Probabilistic Analysis and Randomized
Algorithms

[This chapter introduces probabilistic analysis and randomized algorithms. It as-
sumes that the student is familiar with the basic probability material in Appendix C.

The primary goals of these notes are to

• explain the difference between probabilistic analysis and randomized algo-
rithms,

• present the technique of indicator random variables, and
• give another example of the analysis of a randomized algorithm (permuting an

array in place).

These notes omit the technique of permuting an array by sorting, and they omit the
starred Section 5.4.]

The hiring problem

Scenario:

• You are using an employment agency to hire a new ofÞce assistant.
• The agency sends you one candidate each day.
• You interview the candidate and must immediately decide whether or not to

hire that person. But if you hire, you must also Þre your current ofÞce assis-
tant�even if it�s someone you have recently hired.

• Cost to interview is ci per candidate (interview fee paid to agency).
• Cost to hire is ch per candidate (includes cost to Þre current ofÞce assistant +

hiring fee paid to agency).
• Assume that ch > ci .
• You are committed to having hired, at all times, the best candidate seen so

far. Meaning that whenever you interview a candidate who is better than your
current ofÞce assistant, you must Þre the current ofÞce assistant and hire the
candidate. Since you must have someone hired at all times, you will always
hire the Þrst candidate that you interview.

Goal: Determine what the price of this strategy will be.

5-2 Lecture Notes for Chapter 5: Probabilistic Analysis and Randomized Algorithms

Pseudocode to model this scenario: Assumes that the candidates are numbered 1
to n and that after interviewing each candidate, we can determine if it�s better than
the current ofÞce assistant. Uses a dummy candidate 0 that is worse than all others,
so that the Þrst candidate is always hired.

HIRE-ASSISTANT(n)

best ← 0 � candidate 0 is a least-qualiÞed dummy candidate
for i ← 1 to n

do interview candidate i
if candidate i is better than candidate best
then best ← i

hire candidate i

Cost: If n candidates, and we hire m of them, the cost is O(nci + mch).
• Have to pay nci to interview, no matter how many we hire.
• So we focus on analyzing the hiring cost mch .
• mch varies with each run�it depends on the order in which we interview the

candidates.
• This is a model of a common paradigm: we need to Þnd the maximum or

minimum in a sequence by examining each element and maintaining a current
�winner.� The variable m denotes how many times we change our notion of
which element is currently winning.

Worst-case analysis

In the worst case, we hire all n candidates.

This happens if each one is better than all who came before. In other words, if the
candidates appear in increasing order of quality.

If we hire all n, then the cost is O(nci + nch) = O(nch) (since ch > ci).

Probabilistic analysis

In general, we have no control over the order in which candidates appear.

We could assume that they come in a random order:
• Assign a rank to each candidate: rank(i) is a unique integer in the range 1 to n.
• The ordered list 〈rank(1), rank(2), . . . , rank(n)〉 is a permutation of the candi-

date numbers 〈1, 2, . . . , n〉.
• The list of ranks is equally likely to be any one of the n! permutations.
• Equivalently, the ranks form a uniform random permutation: each of the pos-

sible n! permutations appears with equal probability.

Essential idea of probabilistic analysis: We must use knowledge of, or make as-
sumptions about, the distribution of inputs.
• The expectation is over this distribution.
• This technique requires that we can make a reasonable characterization of the

input distribution.

Lecture Notes for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-3

Randomized algorithms

We might not know the distribution of inputs, or we might not be able to model it
computationally.

Instead, we use randomization within the algorithm in order to impose a distribu-
tion on the inputs.

For the hiring problem: Change the scenario:

• The employment agency sends us a list of all n candidates in advance.
• On each day, we randomly choose a candidate from the list to interview (but

considering only those we have not yet interviewed).
• Instead of relying on the candidates being presented to us in a random order,

we take control of the process and enforce a random order.

What makes an algorithm randomized: An algorithm is randomized if its behav-
ior is determined in part by values produced by a random-number generator.

• RANDOM(a, b) returns an integer r , where a ≤ r ≤ b and each of the b−a+1
possible values of r is equally likely.

• In practice, RANDOM is implemented by a pseudorandom-number generator,
which is a deterministic method returning numbers that �look� random and pass
statistical tests.

Indicator random variables

A simple yet powerful technique for computing the expected value of a random
variable.

Helpful in situations in which there may be dependence.

Given a sample space and an event A, we deÞne the indicator random variable

I {A} =
{

1 if A occurs ,

0 if A does not occur .

Lemma
For an event A, let XA = I {A}. Then E [X A] = Pr {A}.
Proof Letting A be the complement of A, we have

E [X A] = E [I {A}]
= 1 · Pr {A} + 0 · Pr {A} (deÞnition of expected value)

= Pr {A} . (lemma)

5-4 Lecture Notes for Chapter 5: Probabilistic Analysis and Randomized Algorithms

Simple example: Determine the expected number of heads when we ßip a fair coin
one time.

• Sample space is {H, T }.
• Pr {H } = Pr {T } = 1/2.
• DeÞne indicator random variable XH = I {H }. X H counts the number of heads

in one ßip.
• Since Pr {H } = 1/2, lemma says that E [X H] = 1/2.

Slightly more complicated example: Determine the expected number of heads in
n coin ßips.

• Let X be a random variable for the number of heads in n ßips.
• Could compute E [X] =∑n

k=0 k ·Pr {X = k}. In fact, this is what the book does
in equation (C.36).

• Instead, we�ll use indicator random variables.
• For i = 1, 2, . . . , n, deÞne Xi = I {the i th ßip results in event H}.
• Then X =∑n

i=1 Xi .
• Lemma says that E [Xi] = Pr {H } = 1/2 for i = 1, 2, . . . , n.
• Expected number of heads is E[X] = E [

∑n
i=1 Xi].

• Problem: We want E [
∑n

i=1 Xi]. We have only the individual expectations
E [X1] , E [X2] , . . . , E [Xn].

• Solution: Linearity of expectation says that the expectation of the sum equals
the sum of the expectations. Thus,

E [X] = E

[
n∑

i=1

Xi

]

=
n∑

i=1

E [Xi]

=
n∑

i=1

1/2

= n/2 .

• Linearity of expectation applies even when there is dependence among the ran-
dom variables. [Not an issue in this example, but it can be a great help. The
hat-check problem of Exercise 5.2-4 is a problem with lots of dependence. See
the solution on page 5-10 of this manual.]

Analysis of the hiring problem

Assume that the candidates arrive in a random order.

Let X be a random variable that equals the number of times we hire a new ofÞce
assistant.

DeÞne indicator random variables X1, X2, . . . , Xn , where

Xi = I {candidate i is hired} .

Lecture Notes for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-5

Useful properties:

• X = X1 + X2 + · · · + Xn .
• Lemma ⇒ E [Xi] = Pr {candidate i is hired}.
We need to compute Pr {candidate i is hired}.
• Candidate i is hired if and only if candidate i is better than each of candidates

1, 2, . . . , i − 1.
• Assumption that the candidates arrive in random order⇒ candidates 1, 2, . . . , i

arrive in random order ⇒ any one of these Þrst i candidates is equally likely to
be the best one so far.

• Thus, Pr {candidate i is the best so far} = 1/ i .
• Which implies E [Xi] = 1/ i .

Now compute E [X]:

E [X] = E

[
n∑

i=1

Xi

]

=
n∑

i=1

E [Xi]

=
n∑

i=1

1/ i

= ln n + O(1) (equation (A.7): the sum is a harmonic series) .

Thus, the expected hiring cost is O(ch ln n), which is much better than the worst-
case cost of O(nch).

Randomized algorithms

Instead of assuming a distribution of the inputs, we impose a distribution.

The hiring problem

For the hiring problem, the algorithm is deterministic:

• For any given input, the number of times we hire a new ofÞce assistant will
always be the same.

• The number of times we hire a new ofÞce assistant depends only on the input.
• In fact, it depends only on the ordering of the candidates� ranks that it is given.
• Some rank orderings will always produce a high hiring cost. Example: 〈1, 2, 3,

4, 5, 6〉, where each candidate is hired.
• Some will always produce a low hiring cost. Example: any ordering in which

the best candidate is the Þrst one interviewed. Then only the best candidate is
hired.

• Some may be in between.

5-6 Lecture Notes for Chapter 5: Probabilistic Analysis and Randomized Algorithms

Instead of always interviewing the candidates in the order presented, what if we
Þrst randomly permuted this order?

• The randomization is now in the algorithm, not in the input distribution.
• Given a particular input, we can no longer say what its hiring cost will be. Each

time we run the algorithm, we can get a different hiring cost.
• In other words, each time we run the algorithm, the execution depends on the

random choices made.
• No particular input always elicits worst-case behavior.
• Bad behavior occurs only if we get �unlucky� numbers from the random-

number generator.

Pseudocode for randomized hiring problem:

RANDOMIZED-HIRE-ASSISTANT(n)

randomly permute the list of candidates
HIRE-ASSISTANT(n)

Lemma
The expected hiring cost of RANDOMIZED-HIRE-ASSISTANT is O(ch ln n).

Proof After permuting the input array, we have a situation identical to the proba-
bilistic analysis of deterministic HIRE-ASSISTANT.

Randomly permuting an array

[The book considers two methods of randomly permuting an n-element array. The
Þrst method assigns a random priority in the range 1 to n3 to each position and then
reorders the array elements into increasing priority order. We omit this method
from these notes. The second method is better: it works in place (unlike the
priority-based method), it runs in linear time without requiring sorting, and it needs
fewer random bits (n random numbers in the range 1 to n rather than the range 1
to n3). We present and analyze the second method in these notes.]

Goal: Produce a uniform random permutation (each of the n! permutations is
equally likely to be produced).

Non-goal: Show that for each element A[i], the probability that A[i] moves to
position j is 1/n. (See Exercise 5.3-4, whose solution is on page 5-13 of this
manual.)

The following procedure permutes the array A[1 . . n] in place (i.e., no auxiliary
array is required).

RANDOMIZE-IN-PLACE(A, n)

for i ← 1 to n
do swap A[i] ↔ A[RANDOM(i, n)]

Lecture Notes for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-7

Idea:

• In iteration i , choose A[i] randomly from A[i . . n].
• Will never alter A[i] after iteration i .

Time: O(1) per iteration ⇒ O(n) total.

Correctness: Given a set of n elements, a k-permutation is a sequence containing
k of the n elements. There are n!/(n − k)! possible k-permutations.

Lemma
RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof Use a loop invariant:

Loop invariant: Just prior to the i th iteration of the for loop, for each
possible (i − 1)-permutation, subarray A[1 . . i − 1] contains this (i − 1)-
permutation with probability (n − i + 1)!/n!.

Initialization: Just before Þrst iteration, i = 1. Loop invariant says that for each
possible 0-permutation, subarray A[1 . . 0] contains this 0-permutation with
probability n!/n! = 1. A[1 . . 0] is an empty subarray, and a 0-permutation
has no elements. So, A[1 . . 0] contains any 0-permutation with probability 1.

Maintenance: Assume that just prior to the i th iteration, each possible (i − 1)-
permutation appears in A[1 . . i−1] with probability (n− i+1)!/n!. Will show
that after the i th iteration, each possible i-permutation appears in A[1 . . i] with
probability (n− i)!/n!. Incrementing i for the next iteration then maintains the
invariant.

Consider a particular i-permutation π = 〈x1, x2, . . . , xi 〉. It consists of an
(i − 1)-permutation π ′ = 〈x1, x2, . . . , xi−1〉, followed by xi .

Let E1 be the event that the algorithm actually puts π′ into A[1 . . i − 1]. By the
loop invariant, Pr {E1} = (n − i + 1)!/n!.

Let E2 be the event that the i th iteration puts xi into A[i].

We get the i-permutation π in A[1 . . i] if and only if both E1 and E2 occur ⇒
the probability that the algorithm produces π in A[1 . . i] is Pr{E2 ∩ E1}.
Equation (C.14) ⇒ Pr {E2 ∩ E1} = Pr {E2 | E1} Pr {E1}.
The algorithm chooses xi randomly from the n − i + 1 possibilities in A[i . . n]
⇒ Pr {E2 | E1} = 1/(n − i + 1). Thus,

Pr {E2 ∩ E1} = Pr {E2 | E1} Pr {E1}
= 1

n − i + 1
· (n − i + 1)!

n!

= (n − i)!

n!
.

Termination: At termination, i = n + 1, so we conclude that A[1 . . n] is a given
n-permutation with probability (n − n)!/n! = 1/n!. (lemma)

Solutions for Chapter 5:
Probabilistic Analysis and Randomized
Algorithms

Solution to Exercise 5.1-3

To get an unbiased random bit, given only calls to BIASED-RANDOM, call
BIASED-RANDOM twice. Repeatedly do so until the two calls return different
values, and when this occurs, return the Þrst of the two bits:

UNBIASED-RANDOM

while TRUE

do
x ← BIASED-RANDOM

y ← BIASED-RANDOM

if x �= y
then return x

To see that UNBIASED-RANDOM returns 0 and 1 each with probability 1/2, ob-
serve that the probability that a given iteration returns 0 is

Pr {x = 0 and y = 1} = (1− p)p ,

and the probability that a given iteration returns 1 is

Pr {x = 1 and y = 0} = p(1 − p) .

(We rely on the bits returned by BIASED-RANDOM being independent.) Thus, the
probability that a given iteration returns 0 equals the probability that it returns 1.
Since there is no other way for UNBIASED-RANDOM to return a value, it returns 0
and 1 each with probability 1/2.

Assuming that each iteration takes O(1) time, the expected running time of
UNBIASED-RANDOM is linear in the expected number of iterations. We can view
each iteration as a Bernoulli trial, where �success� means that the iteration returns
a value. The probability of success equals the probability that 0 is returned plus the
probability that 1 is returned, or 2p(1 − p). The number of trials until a success
occurs is given by the geometric distribution, and by equation (C.31), the expected
number of trials for this scenario is 1/(2p(1 − p)). Thus, the expected running
time of UNBIASED-RANDOM is �(1/(2p(1− p)).

Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-9

Solution to Exercise 5.2-1

Since HIRE-ASSISTANT always hires candidate 1, it hires exactly once if and only
if no candidates other than candidate 1 are hired. This event occurs when candi-
date 1 is the best candidate of the n, which occurs with probability 1/n.

HIRE-ASSISTANT hires n times if each candidate is better than all those who were
interviewed (and hired) before. This event occurs precisely when the list of ranks
given to the algorithm is 〈1, 2, . . . , n〉, which occurs with probability 1/n!.

Solution to Exercise 5.2-2

We make three observations:

1. Candidate 1 is always hired.

2. The best candidate, i.e., the one whose rank is n, is always hired.

3. If the best candidate is candidate 1, then that is the only candidate hired.

Therefore, in order for HIRE-ASSISTANT to hire exactly twice, candidate 1 must
have rank i ≤ n−1 and all candidates whose ranks are i+1, i +2, . . . , n−1 must
be interviewed after the candidate whose rank is n. (When i = n − 1, this second
condition vacuously holds.)

Let Ei be the event in which candidate 1 has rank i ; clearly, Pr{Ei } = 1/n for any
given value of i .

Letting j denote the position in the interview order of the best candidate, let F be
the event in which candidates 2, 3, . . . , j − 1 have ranks strictly less than the rank
of candidate 1. Given that event Ei has occurred, event F occurs when the best
candidate is the Þrst one interviewed out of the n − i candidates whose ranks are
i + 1, i + 2, . . . , n. Thus, Pr {F | Ei } = 1/(n − i).

Our Þnal event is A, which occurs when HIRE-ASSISTANT hires exactly twice.
Noting that the events E1, E2, . . . , En are disjoint, we have

A = F ∩ (E1 ∪ E2 ∪ · · · ∪ En−1)

= (F ∩ E1) ∪ (F ∩ E2) ∪ · · · ∪ (F ∩ En−1) .

and

Pr {A} =
n−1∑
i=1

Pr {F ∩ Ei } .

By equation (C.14),

Pr {F ∩ Ei} = Pr {F | Ei } Pr {Ei}
= 1

n − i
· 1

n
,

5-10 Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms

and so

Pr {A} =
n−1∑
i=1

1

n − i
· 1

n

= 1

n

n−1∑
i=1

1

n − i

= 1

n

(
1

n − 1
+ 1

n − 2
+ · · · + 1

1

)
= 1

n
· Hn−1 ,

where Hn−1 is the nth harmonic number.

Solution to Exercise 5.2-4

Another way to think of the hat-check problem is that we want to determine the
expected number of Þxed points in a random permutation. (A Þxed point of a
permutation π is a value i for which π(i) = i .) One could enumerate all n!
permutations, count the total number of Þxed points, and divide by n! to determine
the average number of Þxed points per permutation. This would be a painstaking
process, and the answer would turn out to be 1. We can use indicator random
variables, however, to arrive at the same answer much more easily.

DeÞne a random variable X that equals the number of customers that get back their
own hat, so that we want to compute E[X].

For i = 1, 2, . . . , n, deÞne the indicator random variable

Xi = I {customer i gets back his own hat} .

Then X = X1 + X2 + · · · + Xn.

Since the ordering of hats is random, each customer has a probability of 1/n of get-
ting back his own hat. In other words, Pr{Xi = 1} = 1/n, which, by Lemma 5.1,
implies that E [Xi] = 1/n.

Thus,

E [X] = E

[
n∑

i=1

Xi

]

=
n∑

i=1

E [Xi] (linearity of expectation)

=
n∑

i=1

1/n

= 1 ,

and so we expect that exactly 1 customer gets back his own hat.

Note that this is a situation in which the indicator random variables are not inde-
pendent. For example, if n = 2 and X1 = 1, then X2 must also equal 1. Con-
versely, if n = 2 and X1 = 0, then X2 must also equal 0. Despite the dependence,

Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-11

Pr {Xi = 1} = 1/n for all i , and linearity of expectation holds. Thus, we can use
the technique of indicator random variables even in the presence of dependence.

Solution to Exercise 5.2-5

Let Xij be an indicator random variable for the event where the pair A[i], A[j]
for i < j is inverted, i.e., A[i] > A[j]. More precisely, we deÞne Xij =
I {A[i] > A[j]} for 1 ≤ i < j ≤ n. We have Pr {Xij = 1} = 1/2, because
given two distinct random numbers, the probability that the Þrst is bigger than the
second is 1/2. By Lemma 5.1, E [Xij] = 1/2.

Let X be the the random variable denoting the total number of inverted pairs in the
array, so that

X =
n−1∑
i=1

n∑
j=i+1

Xij .

We want the expected number of inverted pairs, so we take the expectation of both
sides of the above equation to obtain

E [X] = E

[
n−1∑
i=1

n∑
j=i+1

Xij

]
.

We use linearity of expectation to get

E [X] = E

[
n−1∑
i=1

n∑
j=i+1

Xij

]

=
n−1∑
i=1

n∑
j=i+1

E [Xij]

=
n−1∑
i=1

n∑
j=i+1

1/2

=
(

n

2

)
1

2

= n(n − 1)

2
· 1

2

= n(n − 1)

4
.

Thus the expected number of inverted pairs is n(n − 1)/4.

Solution to Exercise 5.3-1

Here�s the rewritten procedure:

5-12 Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms

RANDOMIZE-IN-PLACE(A)

n ← length[A]
swap A[1] ↔ A[RANDOM(1, n)]
for i ← 2 to n

do swap A[i] ↔ A[RANDOM(i, n)]

The loop invariant becomes

Loop invariant: Just prior to the iteration of the for loop for each value of
i = 2, . . . , n, for each possible (i−1)-permutation, the subarray A[1 . . i−1]
contains this (i − 1)-permutation with probability (n − i + 1)!/n!.

The maintenance and termination parts remain the same. The initialization part
is for the subarray A[1 . . 1], which contains any 1-permutation with probability
(n − 1)!/n! = 1/n.

Solution to Exercise 5.3-2

Although PERMUTE-WITHOUT-IDENTITY will not produce the identity permuta-
tion, there are other permutations that it fails to produce. For example, consider
its operation when n = 3, when it should be able to produce the n!− 1 = 5 non-
identity permutations. The for loop iterates for i = 1 and i = 2. When i = 1, the
call to RANDOM returns one of two possible values (either 2 or 3), and when i = 2,
the call to RANDOM returns just one value (3). Thus, there are only 2 · 1 = 2 pos-
sible permutations that PERMUTE-WITHOUT-IDENTITY can produce, rather than
the 5 that are required.

Solution to Exercise 5.3-3

The PERMUTE-WITH-ALL procedure does not produce a uniform random per-
mutation. Consider the permutations it produces when n = 3. There are 3 calls
to RANDOM, each of which returns one of 3 values, and so there are 27 possible
outcomes of calling PERMUTE-WITH-ALL. Since there are 3! = 6 permutations,
if PERMUTE-WITH-ALL did produce a uniform random permutation, then each
permutation would occur 1/6 of the time. That would mean that each permutation
would have to occur an integer number m times, where m/27 = 1/6. No integer m
satisÞes this condition.

In fact, if we were to work out the possible permutations of 〈1, 2, 3〉 and how often
they occur with PERMUTE-WITH-ALL, we would get the following probabilities:

permutation probability
〈1, 2, 3〉 4/27
〈1, 3, 2〉 5/27
〈2, 1, 3〉 5/27
〈2, 3, 1〉 5/27
〈3, 1, 2〉 4/27
〈3, 2, 1〉 4/27

Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-13

Although these probabilities add to 1, none are equal to 1/6.

Solution to Exercise 5.3-4

PERMUTE-BY-CYCLIC chooses offset as a random integer in the range 1 ≤
offset ≤ n, and then it performs a cyclic rotation of the array. That is,
B[((i + offset−1) mod n) + 1] ← A[i] for i = 1, 2, . . . , n. (The subtraction
and addition of 1 in the index calculation is due to the 1-origin indexing. If we
had used 0-origin indexing instead, the index calculation would have simplied to
B[(i + offset) mod n] ← A[i] for i = 0, 1, . . . , n − 1.)

Thus, once offset is determined, so is the entire permutation. Since each value of
offset occurs with probability 1/n, each element A[i] has a probability of ending
up in position B[j] with probability 1/n.

This procedure does not produce a uniform random permutation, however, since
it can produce only n different permutations. Thus, n permutations occur with
probability 1/n, and the remaining n!− n permutations occur with probability 0.

Solution to Exercise 5.4-6

First we determine the expected number of empty bins. We deÞne a random vari-
able X to be the number of empty bins, so that we want to compute E[X]. Next, for
i = 1, 2, . . . , n, we deÞne the indicator random variable Yi = I {bin i is empty}.
Thus,

X =
n∑

i=1

Yi ,

and so

E [X] = E

[
n∑

i=1

Yi

]

=
n∑

i=1

E [Yi] (by linearity of expectation)

=
n∑

i=1

Pr {bin i is empty} (by Lemma 5.1) .

Let us focus on a speciÞc bin, say bin i . We view a toss as a success if it misses
bin i and as a failure if it lands in bin i . We have n independent Bernoulli trials,
each with probability of success 1 − 1/n. In order for bin i to be empty, we need
n successes in n trials. Using a binomial distribution, therefore, we have that

Pr {bin i is empty} =
(

n

n

)(
1− 1

n

)n (1

n

)0

=
(

1− 1

n

)n

.

5-14 Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms

Thus,

E [X] =
n∑

i=1

(
1− 1

n

)n

= n

(
1− 1

n

)n

.

By equation (3.13), as n approaches ∞, the quantity (1 − 1/n)n approaches 1/e,
and so E [X] approaches n/e.

Now we determine the expected number of bins with exactly one ball. We re-
deÞne X to be number of bins with exactly one ball, and we redeÞne Yi to be
I {bin i gets exactly one ball}. As before, we Þnd that

E [X] =
n∑

i=1

Pr {bin i gets exactly one ball} .

Again focusing on bin i , we need exactly n−1 successes in n independent Bernoulli
trials, and so

Pr {bin i gets exactly one ball} =
(

n

n − 1

)(
1− 1

n

)n−1 (1

n

)1

= n ·
(

1− 1

n

)n−1 1

n

=
(

1− 1

n

)n−1

,

and so

E [X] =
n∑

i=1

(
1− 1

n

)n−1

= n

(
1− 1

n

)n−1

.

Because

n

(
1− 1

n

)n−1

= n (1− 1
n)

n

1− 1
n

,

as n approaches ∞, we Þnd that E[X] approaches

n/e

1− 1/n
= n2

e(n − 1)
.

Solution to Problem 5-1

a. To determine the expected value represented by the counter after n INCREMENT

operations, we deÞne some random variables:

• For j = 1, 2, . . . , n, let X j denote the increase in the value represented by
the counter due to the j th INCREMENT operation.

• Let Vn be the value represented by the counter after n INCREMENT opera-
tions.

Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-15

Then Vn = X1 + X2 + · · · + Xn. We want to compute E [Vn]. By linearity of
expectation,

E [Vn] = E [X1 + X2 + · · · + Xn] = E [X1]+ E [X2]+ · · · + E [Xn] .

We shall show that E [X j] = 1 for j = 1, 2, . . . , n, which will prove that
E [Vn] = n.

We actually show that E[X j] = 1 in two ways, the second more rigorous than
the Þrst:

1. Suppose that at the start of the j th INCREMENT operation, the counter holds
the value i , which represents ni . If the counter increases due to this INCRE-
MENT operation, then the value it represents increases by ni+1 − ni . The
counter increases with probability 1/(ni+1 − ni), and so

E [X j] = (0 · Pr {counter does not increase})
+ ((ni+1 − ni) · Pr {counter increases})

=
(

0 ·
(

1− 1

ni+1 − ni

))
+
(

(ni+1 − ni) · 1

ni+1 − ni

)
= 1 ,

and so E [X j] = 1 regardless of the value held by the counter.
2. Let C j be the random variable denoting the value held in the counter at the

start of the j th INCREMENT operation. Since we can ignore values of Cj

greater than 2b − 1, we use a formula for conditional expectation:

E [X j] = E [E [X j | C j]]

=
2b−1∑
i=0

E [X j | C j = i] · Pr {C j = i} .

To compute E [X j | C j = i], we note that

• Pr {X j = 0 | C j = i} = 1− 1/(ni+1 − ni),
• Pr {X j = ni+1 − ni | C j = i} = 1/(ni+1 − ni), and
• Pr {X j = k | C j = i} = 0 for all other k.

Thus,

E [X j | C j = i] =
∑

k

k · Pr {X j = k | C j = i}

=
(

0 ·
(

1− 1

ni+1 − ni

))
+
(

(ni+1 − ni) · 1

ni+1 − ni

)
= 1 .

Therefore, noting that

2b−1∑
i=0

Pr {C j = i} = 1 ,

we have

E [X j] =
2b−1∑
i=0

1 · Pr {C j = i}
= 1 .

5-16 Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms

Why is the second way more rigorous than the Þrst? Both ways condition on the
value held in the counter, but only the second way incorporates the conditioning
into the expression for E[X j].

b. DeÞning Vn and X j as in part (a), we want to compute Var[Vn], where ni =
100i . The X j are pairwise independent, and so by equation (C.28), Var[Vn] =
Var [X1]+ Var [X2]+ · · · + Var [Xn].

Since ni = 100i , we see that ni+1 − ni = 100(i + 1)− 100i = 100. Therefore,
with probability 99/100, the increase in the value represented by the counter
due to the j th INCREMENT operation is 0, and with probability 1/100, the
value represented increases by 100. Thus, by equation (C.26),

Var [X j] = E
[
X2

j

]− E2 [X j]

=
((

02 · 99

100

)
+
(

1002 · 1

100

))
− 12

= 100 − 1

= 99 .

Summing up the variances of the Xj gives Var [Vn] = 99n.

Lecture Notes for Chapter 6:
Heapsort

Chapter 6 overview

Heapsort

• O(n lg n) worst case�like merge sort.
• Sorts in place�like insertion sort.
• Combines the best of both algorithms.

To understand heapsort, we�ll cover heaps and heap operations, and then we�ll take
a look at priority queues.

Heaps

Heap data structure

• Heap A (not garbage-collected storage) is a nearly complete binary tree.

• Height of node = # of edges on a longest simple path from the node down to
a leaf.

• Height of heap = height of root = �(lg n).

• A heap can be stored as an array A.

• Root of tree is A[1].
• Parent of A[i] = A[i/2
].
• Left child of A[i] = A[2i].
• Right child of A[i] = A[2i + 1].
• Computing is fast with binary representation implementation.

[In book, have length and heap-size attributes. Here, we bypass these attributes and
use parameter values instead.]

6-2 Lecture Notes for Chapter 6: Heapsort

Example: of a max-heap. [Arcs above and below the array on the right go between
parents and children. There is no signiÞcance to whether an arc is drawn above or
below the array.]

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

Heap property

• For max-heaps (largest element at root), max-heap property: for all nodes i ,
excluding the root, A[PARENT(i)] ≥ A[i].

• For min-heaps (smallest element at root), min-heap property: for all nodes i ,
excluding the root, A[PARENT(i)] ≤ A[i].

By induction and transitivity of ≤, the max-heap property guarantees that the max-
imum element of a max-heap is at the root. Similar argument for min-heaps.

The heapsort algorithm we�ll show uses max-heaps.

Note: In general, heaps can be k-ary tree instead of binary.

Maintaining the heap property

MAX-HEAPIFY is important for manipulating max-heaps. It is used to maintain
the max-heap property.

• Before MAX-HEAPIFY, A[i] may be smaller than its children.
• Assume left and right subtrees of i are max-heaps.
• After MAX-HEAPIFY, subtree rooted at i is a max-heap.

MAX-HEAPIFY(A, i, n)

l ← LEFT(i)
r ← RIGHT(i)
if l ≤ n and A[l] > A[i]
then largest ← l
else largest ← i

if r ≤ n and A[r] > A[largest]
then largest ← r

if largest �= i
then exchange A[i] ↔ A[largest]

MAX-HEAPIFY(A, largest, n)

Lecture Notes for Chapter 6: Heapsort 6-3

[Parameter n replaces attribute heap-size[A].]
The way MAX-HEAPIFY works:
• Compare A[i], A[LEFT(i)], and A[RIGHT(i)].
• If necessary, swap A[i] with the larger of the two children to preserve heap

property.
• Continue this process of comparing and swapping down the heap, until subtree

rooted at i is max-heap. If we hit a leaf, then the subtree rooted at the leaf is
trivially a max-heap.

Run MAX-HEAPIFY on the following heap example.

16

4 10

14 7 9

2 8 1

(a)

16

14 10

4 7 9 3

2 8 1

(b)

16

14 10

8 7 9 3

2 4 1

(c)

3

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

i

i

i

• Node 2 violates the max-heap property.
• Compare node 2 with its children, and then swap it with the larger of the two

children.
• Continue down the tree, swapping until the value is properly placed at the root

of a subtree that is a max-heap. In this case, the max-heap is a leaf.

Time: O(lg n).

Correctness: [Instead of book�s formal analysis with recurrence, just come up
with O(lg n) intuitively.] Heap is almost-complete binary tree, hence must pro-
cess O(lg n) levels, with constant work at each level (comparing 3 items and maybe
swapping 2).

Building a heap

The following procedure, given an unordered array, will produce a max-heap.

6-4 Lecture Notes for Chapter 6: Heapsort

BUILD-MAX-HEAP(A, n)

for i ← 	n/2
 downto 1
do MAX-HEAPIFY(A, i, n)

[Parameter n replaces both attributes length[A] and heap-size[A].]

Example: Building a max-heap from the following unsorted array results in the
Þrst heap example.

• i starts off as 5.
• MAX-HEAPIFY is applied to subtrees rooted at nodes (in order): 16, 2, 3, 1, 4.

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

4

1 3

2 9 10

14 8 7

16

4 1 23 16 9 10 14 8 7

16

14 10

8 9 3

2 4 1

7

A

i

2 3 4 5 6 7 8 9 101

Correctness

Loop invariant: At start of every iteration of for loop, each node i + 1,
i + 2, . . . , n is root of a max-heap.

Initialization: By Exercise 6.1-7, we know that each node	n/2
 + 1, 	n/2
 + 2,
. . . , n is a leaf, which is the root of a trivial max-heap. Since i =	n/2
 before
the Þrst iteration of the for loop, the invariant is initially true.

Maintenance: Children of node i are indexed higher than i , so by the loop invari-
ant, they are both roots of max-heaps. Correctly assuming that i+1, i+2, . . . , n
are all roots of max-heaps, MAX-HEAPIFY makes node i a max-heap root.
Decrementing i reestablishes the loop invariant at each iteration.

Termination: When i = 0, the loop terminates. By the loop invariant, each node,
notably node 1, is the root of a max-heap.

Analysis

• Simple bound: O(n) calls to MAX-HEAPIFY, each of which takes O(lg n)

time ⇒ O(n lg n). (Note: A good approach to analysis in general is to start by
proving easy bound, then try to tighten it.)

• Tighter analysis: Observation: Time to run MAX-HEAPIFY is linear in the
height of the node it�s run on, and most nodes have small heights. Have
≤ �n/2h+1� nodes of height h (see Exercise 6.3-3), and height of heap is	lg n

(Exercise 6.1-2).

Lecture Notes for Chapter 6: Heapsort 6-5

The time required by MAX-HEAPIFY when called on a node of height h
is O(h), so the total cost of BUILD-MAX-HEAP is

	lg n
∑
h=0

⌈ n

2h+1

⌉
O(h) = O

(
n
	lg n
∑
h=0

h

2h

)
.

Evaluate the last summation by substituting x = 1/2 in the formula (A.8)
(
∑∞

k=0 kxk), which yields
∞∑

h=0

h

2h
= 1/2

(1− 1/2)2

= 2 .

Thus, the running time of BUILD-MAX-HEAP is O(n).

Building a min-heap from an unordered array can be done by calling MIN-
HEAPIFY instead of MAX-HEAPIFY, also taking linear time.

The heapsort algorithm

Given an input array, the heapsort algorithm acts as follows:

• Builds a max-heap from the array.
• Starting with the root (the maximum element), the algorithm places the maxi-

mum element into the correct place in the array by swapping it with the element
in the last position in the array.

• �Discard� this last node (knowing that it is in its correct place) by decreasing the
heap size, and calling MAX-HEAPIFY on the new (possibly incorrectly-placed)
root.

• Repeat this �discarding� process until only one node (the smallest element)
remains, and therefore is in the correct place in the array.

HEAPSORT(A, n)

BUILD-MAX-HEAP(A, n)

for i ← n downto 2
do exchange A[1] ↔ A[i]

MAX-HEAPIFY(A, 1, i − 1)

[Parameter n replaces length[A], and parameter value i −1 in MAX-HEAPIFY call
replaces decrementing of heap-size[A].]

Example: Sort an example heap on the board. [Nodes with heavy outline are no
longer in the heap.]

6-6 Lecture Notes for Chapter 6: Heapsort

(a) (b)

(c) (d)

(e)

1 2 3 4 7

2

1 3

4 7

1

2 3

4 7

3

2 1

74

4

2 3

71

7

4 3

21

A

i

i

i

i

Analysis

• BUILD-MAX-HEAP: O(n)

• for loop: n − 1 times
• exchange elements: O(1)

• MAX-HEAPIFY: O(lg n)

Total time: O(n lg n).

Though heapsort is a great algorithm, a well-implemented quicksort usually beats
it in practice.

Heap implementation of priority queue

Heaps efÞciently implement priority queues. These notes will deal with max-
priority queues implemented with max-heaps. Min-priority queues are imple-
mented with min-heaps similarly.

A heap gives a good compromise between fast insertion but slow extraction and
vice versa. Both operations take O(lg n) time.

Priority queue

• Maintains a dynamic set S of elements.
• Each set element has a key�an associated value.
• Max-priority queue supports dynamic-set operations:

• INSERT(S, x): inserts element x into set S.
• MAXIMUM(S): returns element of S with largest key.

Lecture Notes for Chapter 6: Heapsort 6-7

• EXTRACT-MAX(S): removes and returns element of S with largest key.
• INCREASE-KEY(S, x, k): increases value of element x�s key to k. Assume

k ≥ x�s current key value.

• Example max-priority queue application: schedule jobs on shared computer.
• Min-priority queue supports similar operations:

• INSERT(S, x): inserts element x into set S.
• MINIMUM(S): returns element of S with smallest key.
• EXTRACT-MIN(S): removes and returns element of S with smallest key.
• DECREASE-KEY(S, x, k): decreases value of element x�s key to k. Assume

k ≤ x�s current key value.

• Example min-priority queue application: event-driven simulator.

Note: Actual implementations often have a handle in each heap element that allows
access to an object in the application, and objects in the application often have a
handle (likely an array index) to access the heap element.

Will examine how to implement max-priority queue operations.

Finding the maximum element

Getting the maximum element is easy: it�s the root.

HEAP-MAXIMUM(A)

return A[1]

Time: �(1).

Extracting max element

Given the array A:

• Make sure heap is not empty.
• Make a copy of the maximum element (the root).
• Make the last node in the tree the new root.
• Re-heapify the heap, with one fewer node.
• Return the copy of the maximum element.

HEAP-EXTRACT-MAX(A, n)

if n < 1
then error �heap underßow�

max ← A[1]
A[1] ← A[n]
MAX-HEAPIFY(A, 1, n − 1) � remakes heap
return max

[Parameter n replaces heap-size[A], and parameter value n− 1 in MAX-HEAPIFY

call replaces decrementing of heap-size[A].]

6-8 Lecture Notes for Chapter 6: Heapsort

Analysis: constant time assignments plus time for MAX-HEAPIFY.

Time: O(lg n).

Example: Run HEAP-EXTRACT-MAX on Þrst heap example.

• Take 16 out of node 1.
• Move 1 from node 10 to node 1.
• Erase node 10.
• MAX-HEAPIFY from the root to preserve max-heap property.
• Note that successive extractions will remove items in reverse sorted order.

Increasing key value

Given set S, element x , and new key value k:

• Make sure k ≥ x�s current key.
• Update x�s key value to k.
• Traverse the tree upward comparing x to its parent and swapping keys if neces-

sary, until x�s key is smaller than its parent�s key.

HEAP-INCREASE-KEY(A, i, key)

if key < A[i]
then error �new key is smaller than current key�

A[i] ← key
while i > 1 and A[PARENT(i)] < A[i]

do exchange A[i] ↔ A[PARENT(i)]
i ← PARENT(i)

Analysis: Upward path from node i has length O(lg n) in an n-element heap.

Time: O(lg n).

Example: Increase key of node 9 in Þrst heap example to have value 15. Exchange
keys of nodes 4 and 9, then of nodes 2 and 4.

Inserting into the heap

Given a key k to insert into the heap:

• Insert a new node in the very last position in the tree with key −∞.
• Increase the −∞ key to k using the HEAP-INCREASE-KEY procedure deÞned

above.

MAX-HEAP-INSERT(A, key, n)

A[n + 1] ←−∞
HEAP-INCREASE-KEY(A, n + 1, key)

[Parameter n replaces heap-size[A], and use of value n + 1 replaces incrementing
of heap-size[A].]

Lecture Notes for Chapter 6: Heapsort 6-9

Analysis: constant time assignments + time for HEAP-INCREASE-KEY.

Time: O(lg n).

Min-priority queue operations are implemented similarly with min-heaps.

Solutions for Chapter 6:
Heapsort

Solution to Exercise 6.1-1

Since a heap is an almost-complete binary tree (complete at all levels except pos-
sibly the lowest), it has at most 2h+1 − 1 elements (if it is complete) and at least
2h −1+1 = 2h elements (if the lowest level has just 1 element and the other levels
are complete).

Solution to Exercise 6.1-2

Given an n-element heap of height h, we know from Exercise 6.1-1 that

2h ≤ n ≤ 2h+1 − 1 < 2h+1 .

Thus, h ≤ lg n < h + 1. Since h is an integer, h = 	lg n
 (by deÞnition of 	
).

Solution to Exercise 6.1-3

Assume the claim is false�i.e., that there is a subtree whose root is not the largest
element in the subtree. Then the maximum element is somewhere else in the sub-
tree, possibly even at more than one location. Let m be the index at which the
maximum appears (the lowest such index if the maximum appears more than once).
Since the maximum is not at the root of the subtree, node m has a parent. Since
the parent of a node has a lower index than the node, and m was chosen to be the
smallest index of the maximum value, A[PARENT(m)] < A[m]. But by the max-
heap property, we must have A[PARENT(m)] ≥ A[m]. So our assumption is false,
and the claim is true.

Solution to Exercise 6.2-6

If you put a value at the root that is less than every value in the left and right
subtrees, then MAX-HEAPIFY will be called recursively until a leaf is reached. To

Solutions for Chapter 6: Heapsort 6-11

make the recursive calls traverse the longest path to a leaf, choose values that make
MAX-HEAPIFY always recurse on the left child. It follows the left branch when the
left child is≥ the right child, so putting 0 at the root and 1 at all the other nodes, for
example, will accomplish that. With such values, MAX-HEAPIFY will be called h
times (where h is the heap height, which is the number of edges in the longest path
from the root to a leaf), so its running time will be �(h) (since each call does �(1)

work), which is �(lg n). Since we have a case in which MAX-HEAPIFY�s running
time is �(lg n), its worst-case running time is �(lg n).

Solution to Exercise 6.3-3

Let H be the height of the heap.

Two subtleties to beware of:

• Be careful not to confuse the height of a node (longest distance from a leaf)
with its depth (distance from the root).

• If the heap is not a complete binary tree (bottom level is not full), then the nodes
at a given level (depth) don�t all have the same height. For example, although all
nodes at depth H have height 0, nodes at depth H − 1 can have either height 0
or height 1.

For a complete binary tree, it�s easy to show that there are �n/2h+1� nodes of
height h. But the proof for an incomplete tree is tricky and is not derived from the
proof for a complete tree.

Proof By induction on h.

Basis: Show that it�s true for h = 0 (i.e., that # of leaves ≤�n/2h+1� = �n/2�).
In fact, we�ll show that the # of leaves =�n/2�.
The tree leaves (nodes at height 0) are at depths H and H − 1. They consist of

• all nodes at depth H , and
• the nodes at depth H − 1 that are not parents of depth-H nodes.

Let x be the number of nodes at depth H�that is, the number of nodes in the
bottom (possibly incomplete) level.

Note that n − x is odd, because the n − x nodes above the bottom level form a
complete binary tree, and a complete binary tree has an odd number of nodes (1
less than a power of 2). Thus if n is odd, x is even, and if n is even, x is odd.

To prove the base case, we must consider separately the case in which n is even
(x is odd) and the case in which n is odd (x is even). Here are two ways to do
this: The Þrst requires more cleverness, and the second requires more algebraic
manipulation.

1. First method of proving the base case:

• If n is odd, then x is even, so all nodes have siblings�i.e., all internal
nodes have 2 children. Thus (see Exercise B.5-3), # of internal nodes =
of leaves − 1.

6-12 Solutions for Chapter 6: Heapsort

So, n = # of nodes = # of leaves+ # of internal nodes = 2 · # of leaves− 1.
Thus, # of leaves = (n+1)/2 = �n/2�. (The latter equality holds because n
is odd.)

• If n is even, then x is odd, and some leaf doesn�t have a sibling. If we gave
it a sibling, we would have n + 1 nodes, where n + 1 is odd, so the case
we analyzed above would apply. Observe that we would also increase the
number of leaves by 1, since we added a node to a parent that already had
a child. By the odd-node case above, # of leaves + 1 = �(n + 1)/2� =
�n/2� + 1. (The latter equality holds because n is even.)

In either case, # of leaves = �n/2�.
2. Second method of proving the base case:

Note that at any depth d < H there are 2d nodes, because all such tree levels
are complete.

• If x is even, there are x/2 nodes at depth H − 1 that are parents of depth H
nodes, hence 2H−1−x/2 nodes at depth H−1 that are not parents of depth-H
nodes. Thus,

total # of height-0 nodes = x + 2H−1 − x/2

= 2H−1 + x/2

= (2H + x)/2

= �(2H + x − 1)/2� (because x is even)

= �n/2� .

(n = 2H + x − 1 because the complete tree down to depth H − 1 has 2H − 1
nodes and depth H has x nodes.)

• If x is odd, by an argument similar to the even case, we see that

of height-0 nodes = x + 2H−1 − (x + 1)/2

= 2H−1 + (x − 1)/2

= (2H + x − 1)/2

= n/2

= �n/2� (because x odd ⇒ n even) .

Inductive step: Show that if it�s true for height h − 1, it�s true for h.

Let nh be the number of nodes at height h in the n-node tree T .

Consider the tree T ′ formed by removing the leaves of T . It has n′ = n−n0 nodes.
We know from the base case that n0 = �n/2�, so n′ = n−n0 = n−�n/2� = 	n/2
.
Note that the nodes at height h in T would be at height h − 1 if the leaves of the
tree were removed�that is, they are at height h − 1 in T′. Letting n′h−1 denote the
number of nodes at height h − 1 in T′, we have

nh = n′h−1 .

By induction, we can bound n′h−1:

nh = n′h−1 ≤ �n′/2h� = �	n/2
 /2h� ≤ �(n/2)/2h� = �n/2h+1� .

Solutions for Chapter 6: Heapsort 6-13

Solution to Exercise 6.4-1

(b) (c)

(d) (e) (f)

(g) (h) (i)

2 4 5 7 8 13 17 20 25

20

4

2 5

7 8 13 17

25

2

4 5

7 8 13 17

2520

5

4 2

171387

20 25

7

4 5

171382

20 25

13

58

2 7 4 17

2520

8

7 5

171342

20 25

17

13 5

2478

2520

20

13 17

2478

255

A

i
i

i i i

i

i i

(a)

25

13 20

21778

45

6-14 Solutions for Chapter 6: Heapsort

Solution to Exercise 6.5-2

22

22

81 81

8

1 10

i

8

1 -∞

15

13 9

5 12 8 7

4 0 6

(a)

15

13 9

5 12 8 7

4 0 6

(b)

15

13 9

0

12 10 7

4

5

6

(c)

i

15

5

10

0

12 9 7

4

13

6

(d)

i

Solution to Problem 6-1

a. The procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP′ do not always
create the same heap when run on the same input array. Consider the following
counterexample.

Input array A:

1 2 3A

BUILD-MAX-HEAP(A):

1

32

3

12

3 2 1A

BUILD-MAX-HEAP ′(A):

1

-∞

2

-∞1

3

21

3 1 2A

b. An upper bound of O(n lg n) time follows immediately from there being n − 1
calls to MAX-HEAP-INSERT, each taking O(lg n) time. For a lower bound of

Solutions for Chapter 6: Heapsort 6-15

�(n lg n), consider the case in which the input array is given in strictly increas-
ing order. Each call to MAX-HEAP-INSERT causes HEAP-INCREASE-KEY to
go all the way up to the root. Since the depth of node i is	lg i
, the total time is

n∑
i=1

�(lg i
) ≥
n∑

i=�n/2�
�(lg �n/2�
)

≥
n∑

i=�n/2�
�(lg(n/2)
)

=
n∑

i=�n/2�
�(lg n − 1
)

≥ n/2 ·�(lg n)

= �(n lg n) .

In the worst case, therefore, BUILD-MAX-HEAP′ requires �(n lg n) time to
build an n-element heap.

Solution to Problem 6-2

a. A d-ary heap can be represented in a 1-dimensional array as follows. The root
is kept in A[1], its d children are kept in order in A[2] through A[d + 1], their
children are kept in order in A[d + 2] through A[d2 + d + 1], and so on. The
following two procedures map a node with index i to its parent and to its j th
child (for 1 ≤ j ≤ d), respectively.

D-ARY-PARENT(i)

return 	(i − 2)/d + 1

D-ARY-CHILD(i, j)

return d(i − 1)+ j + 1

To convince yourself that these procedures really work, verify that

D-ARY-PARENT(D-ARY-CHILD(i, j)) = i ,

for any 1 ≤ j ≤ d . Notice that the binary heap procedures are a special case of
the above procedures when d = 2.

b. Since each node has d children, the height of a d-ary heap with n nodes is
�(logd n) = �(lg n/ lg d).

c. The procedure HEAP-EXTRACT-MAX given in the text for binary heaps works
Þne for d-ary heaps too. The change needed to support d-ary heaps is in MAX-
HEAPIFY, which must compare the argument node to all d children instead of
just 2 children. The running time of HEAP-EXTRACT-MAX is still the running
time for MAX-HEAPIFY, but that now takes worst-case time proportional to the
product of the height of the heap by the number of children examined at each
node (at most d), namely �(d logd n) = �(d lg n/ lg d).

6-16 Solutions for Chapter 6: Heapsort

d. The procedure MAX-HEAP-INSERT given in the text for binary heaps works
Þne for d-ary heaps too. The worst-case running time is still �(h), where h
is the height of the heap. (Since only parent pointers are followed, the number
of children a node has is irrelevant.) For a d-ary heap, this is �(logd n) =
�(lg n/ lg d).

e. D-ARY-HEAP-INCREASE-KEY can be implemented as a slight modiÞcation
of MAX-HEAP-INSERT (only the Þrst couple lines are different). Increas-
ing an element may make it larger than its parent, in which case it must be
moved higher up in the tree. This can be done just as for insertion, travers-
ing a path from the increased node toward the root. In the worst case, the
entire height of the tree must be traversed, so the worst-case running time is
�(h) = �(logd n) = �(lg n/ lg d).

D-ARY-HEAP-INCREASE-KEY(A, i, k)

A[i] ← max(A[i], k)

while i > 1 and A[PARENT(i)] < A[i]
do exchange A[i] ↔ A[PARENT(i)]

i ← PARENT(i)

Lecture Notes for Chapter 7:
Quicksort

Chapter 7 overview

[The treatment in the second edition differs from that of the Þrst edition. We use
a different partitioning method�known as �Lomuto partitioning��in the second
edition, rather than the �Hoare partitioning� used in the Þrst edition. Using Lomuto
partitioning helps simplify the analysis, which uses indicator random variables in
the second edition.]

Quicksort

• Worst-case running time: �(n2).
• Expected running time: �(n lg n).
• Constants hidden in �(n lg n) are small.
• Sorts in place.

Description of quicksort

Quicksort is based on the three-step process of divide-and-conquer.

• To sort the subarray A[p . . r]:

Divide: Partition A[p . . r], into two (possibly empty) subarrays A[p . . q − 1]
and A[q + 1 . . r], such that each element in the Þrst subarray A[p . . q − 1]
is ≤ A[q] and A[q] is ≤ each element in the second subarray A[q + 1 . . r].

Conquer: Sort the two subarrays by recursive calls to QUICKSORT.
Combine: No work is needed to combine the subarrays, because they are sorted

in place.

• Perform the divide step by a procedure PARTITION, which returns the index q
that marks the position separating the subarrays.

7-2 Lecture Notes for Chapter 7: Quicksort

QUICKSORT(A, p, r)

if p < r
then q ← PARTITION(A, p, r)

QUICKSORT(A, p, q − 1)

QUICKSORT(A, q + 1, r)

Initial call is QUICKSORT(A, 1, n).

Partitioning

Partition subarray A[p . . r] by the following procedure:

PARTITION(A, p, r)

x ← A[r]
i ← p − 1
for j ← p to r − 1

do if A[j] ≤ x
then i ← i + 1

exchange A[i] ↔ A[j]
exchange A[i + 1] ↔ A[r]
return i + 1

• PARTITION always selects the last element A[r] in the subarray A[p . . r] as the
pivot�the element around which to partition.

• As the procedure executes, the array is partitioned into four regions, some of
which may be empty:

Loop invariant:

1. All entries in A[p . . i] are ≤ pivot.

2. All entries in A[i + 1 . . j − 1] are > pivot.

3. A[r] = pivot.

It�s not needed as part of the loop invariant, but the fourth region is A[j . . r−1],
whose entries have not yet been examined, and so we don�t know how they
compare to the pivot.

Example: On an 8-element subarray.

Lecture Notes for Chapter 7: Quicksort 7-3

8 1 6 4 0 3 9 5

p,j ri

8 1 6 4 0 3 9 5

p rj

1 8 6 4 0 3 9 5

p,i rj

1 8 6 4 0 3 9 5

p,i rj

1 864 0 3 9 5

p rji

1 8 64 0 3 9 5

p rji

1 3 64 0 8 9 5

p rji

1 3 64 0 8 9 5

p ri

1 654 0 8 93

p ri

i

A[r]: pivot
A[j .. r�1]: not yet examined
A[i+1 .. j�1]: known to be > pivot
A[p .. i]: known to be ≤ pivot

[The index j disappears because it is no longer needed once the for loop is exited.]

Correctness: Use the loop invariant to prove correctness of PARTITION:

Initialization: Before the loop starts, all the conditions of the loop invariant are
satisÞed, because r is the pivot and the subarrays A[p . . i] and A[i + 1 . . j − 1]
are empty.

Maintenance: While the loop is running, if A[j] ≤ pivot, then A[j] and A[i + 1]
are swapped and then i and j are incremented. If A[j] > pivot, then increment
only j .

Termination: When the loop terminates, j = r , so all elements in A are parti-
tioned into one of the three cases: A[p . . i] ≤ pivot, A[i + 1 . . r − 1] > pivot,
and A[r] = pivot.

The last two lines of PARTITION move the pivot element from the end of the array
to between the two subarrays. This is done by swapping the pivot and the Þrst
element of the second subarray, i.e., by swapping A[i + 1] and A[r].

Time for partitioning: �(n) to partition an n-element subarray.

7-4 Lecture Notes for Chapter 7: Quicksort

Performance of quicksort

The running time of quicksort depends on the partitioning of the subarrays:
• If the subarrays are balanced, then quicksort can run as fast as mergesort.
• If they are unbalanced, then quicksort can run as slowly as insertion sort.

Worst case

• Occurs when the subarrays are completely unbalanced.
• Have 0 elements in one subarray and n − 1 elements in the other subarray.
• Get the recurrence

T (n) = T (n − 1)+ T (0)+�(n)

= T (n − 1)+�(n)

= �(n2) .

• Same running time as insertion sort.
• In fact, the worst-case running time occurs when quicksort takes a sorted array

as input, but insertion sort runs in O(n) time in this case.

Best case

• Occurs when the subarrays are completely balanced every time.
• Each subarray has ≤ n/2 elements.
• Get the recurrence

T (n) = 2T (n/2)+�(n)

= �(n lg n) .

Balanced partitioning

• Quicksort�s average running time is much closer to the best case than to the
worst case.

• Imagine that PARTITION always produces a 9-to-1 split.
• Get the recurrence

T (n) ≤ T (9n/10)+ T (n/10)+�(n)

= O(n lg n) .

• Intuition: look at the recursion tree.
• It�s like the one for T (n) = T (n/3)+ T (2n/3)+ O(n) in Section 4.2.
• Except that here the constants are different; we get log10 n full levels and

log10/9 n levels that are nonempty.
• As long as it�s a constant, the base of the log doesn�t matter in asymptotic

notation.
• Any split of constant proportionality will yield a recursion tree of depth

�(lg n).

Lecture Notes for Chapter 7: Quicksort 7-5

Intuition for the average case

• Splits in the recursion tree will not always be constant.
• There will usually be a mix of good and bad splits throughout the recursion

tree.
• To see that this doesn�t affect the asymptotic running time of quicksort, assume

that levels alternate between best-case and worst-case splits.

n

0 n�1

n

(n�1)/2 (n�1)/2

Θ(n) Θ(n)

(n�1)/2(n�1)/2 � 1

• The extra level in the left-hand Þgure only adds to the constant hidden in the
�-notation.

• There are still the same number of subarrays to sort, and only twice as much
work was done to get to that point.

• Both Þgures result in O(n lg n) time, though the constant for the Þgure on the
left is higher than that of the Þgure on the right.

Randomized version of quicksort

• We have assumed that all input permutations are equally likely.
• This is not always true.
• To correct this, we add randomization to quicksort.
• We could randomly permute the input array.
• Instead, we use random sampling, or picking one element at random.
• Don�t always use A[r] as the pivot. Instead, randomly pick an element from the

subarray that is being sorted.

We add this randomization by not always using A[r] as the pivot, but instead ran-
domly picking an element from the subarray that is being sorted.

RANDOMIZED-PARTITION(A, p, r)

i ← RANDOM(p, r)

exchange A[r] ↔ A[i]
return PARTITION(A, p, r)

Randomly selecting the pivot element will, on average, cause the split of the input
array to be reasonably well balanced.

7-6 Lecture Notes for Chapter 7: Quicksort

RANDOMIZED-QUICKSORT(A, p, r)

if p < r
then q ← RANDOMIZED-PARTITION(A, p, r)

RANDOMIZED-QUICKSORT(A, p, q − 1)

RANDOMIZED-QUICKSORT(A, q + 1, r)

Randomization of quicksort stops any speciÞc type of array from causing worst-
case behavior. For example, an already-sorted array causes worst-case behavior in
non-randomized QUICKSORT, but not in RANDOMIZED-QUICKSORT.

Analysis of quicksort

We will analyze
• the worst-case running time of QUICKSORT and RANDOMIZED-QUICKSORT

(the same), and
• the expected (average-case) running time of RANDOMIZED-QUICKSORT.

Worst-case analysis

We will prove that a worst-case split at every level produces a worst-case running
time of O(n2).

• Recurrence for the worst-case running time of QUICKSORT:

T (n) = max
0≤q≤n−1

(T (q)+ T (n − q − 1))+�(n) .

• Because PARTITION produces two subproblems, totaling size n − 1, q ranges
from 0 to n − 1.

• Guess: T (n) ≤ cn2, for some c.
• Substituting our guess into the above recurrence:

T (n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2)+�(n)

= c · max
0≤q≤n−1

(q2 + (n − q − 1)2)+�(n) .

• The maximum value of (q2 + (n − q − 1)2) occurs when q is either 0 or n − 1.
(Second derivative with respect to q is positive.) This means that

max
0≤q≤n−1

(q2 + (n − q − 1)2) ≤ (n − 1)2

= n2 − 2n + 1 .

• Therefore,
T (n) ≤ cn2 − c(2n − 1)+�(n)

≤ cn2 if c(2n − 1) ≥ �(n) .

• Pick c so that c(2n − 1) dominates �(n).
• Therefore, the worst-case running time of quicksort is O(n2).
• Can also show that the recurrence�s solution is �(n2). Thus, the worst-case

running time is �(n2).

Lecture Notes for Chapter 7: Quicksort 7-7

Average-case analysis

• The dominant cost of the algorithm is partitioning.
• PARTITION removes the pivot element from future consideration each time.
• Thus, PARTITION is called at most n times.
• QUICKSORT recurses on the partitions.
• The amount of work that each call to PARTITION does is a constant plus the

number of comparisons that are performed in its for loop.
• Let X = the total number of comparisons performed in all calls to PARTITION.
• Therefore, the total work done over the entire execution is O(n + X).

We will now compute a bound on the overall number of comparisons.

For ease of analysis:

• Rename the elements of A as z1, z2, . . . , zn , with zi being the i th smallest ele-
ment.

• DeÞne the set Zij = {zi , zi+1, . . . , z j } to be the set of elements between zi

and z j , inclusive.

Each pair of elements is compared at most once, because elements are compared
only to the pivot element, and then the pivot element is never in any later call to
PARTITION.

Let Xij = I {zi is compared to z j }.
(Considering whether zi is compared to z j at any time during the entire quicksort
algorithm, not just during one call of PARTITION.)

Since each pair is compared at most once, the total number of comparisons per-
formed by the algorithm is

X =
n−1∑
i=1

n∑
j=i+1

Xij .

Take expectations of both sides, use Lemma 5.1 and linearity of expectation:

E [X] = E

[
n−1∑
i=1

n∑
j=i+1

Xij

]

=
n−1∑
i=1

n∑
j=i+1

E [Xij]

=
n−1∑
i=1

n∑
j=i+1

Pr {zi is compared to z j } .

Now all we have to do is Þnd the probability that two elements are compared.

• Think about when two elements are not compared.

• For example, numbers in separate partitions will not be compared.
• In the previous example, 〈8, 1, 6, 4, 0, 3, 9, 5〉 and the pivot is 5, so that none

of the set {1, 4, 0, 3} will ever be compared to any of the set {8, 6, 9}.

7-8 Lecture Notes for Chapter 7: Quicksort

• Once a pivot x is chosen such that zi < x < z j , then zi and z j will never be
compared at any later time.

• If either zi or z j is chosen before any other element of Zij , then it will be
compared to all the elements of Zij , except itself.

• The probability that zi is compared to z j is the probability that either zi or z j is
the Þrst element chosen.

• There are j−i+1 elements, and pivots are chosen randomly and independently.
Thus, the probability that any particular one of them is the Þrst one chosen is
1/(j − i + 1).

Therefore,

Pr {zi is compared to z j} = Pr {zi or z j is the Þrst pivot chosen from Zij }
= Pr {zi is the Þrst pivot chosen from Zij }

+Pr {z j is the Þrst pivot chosen from Zij }
= 1

j − i + 1
+ 1

j − i + 1

= 2

j − i + 1
.

[The second line follows because the two events are mutually exclusive.]

Substituting into the equation for E[X]:

E [X] =
n−1∑
i=1

n∑
j=i+1

2

j − i + 1
.

Evaluate by using a change in variables (k = j − i) and the bound on the harmonic
series in equation (A.7):

E [X] =
n−1∑
i=1

n∑
j=i+1

2

j − i + 1

=
n−1∑
i=1

n−i∑
k=1

2

k + 1

<

n−1∑
i=1

n∑
k=1

2

k

=
n−1∑
i=1

O(lg n)

= O(n lg n) .

So the expected running time of quicksort, using RANDOMIZED-PARTITION, is
O(n lg n).

Solutions for Chapter 7:
Quicksort

Solution to Exercise 7.2-3

PARTITION does a �worst-case partitioning� when the elements are in decreasing
order. It reduces the size of the subarray under consideration by only 1 at each step,
which we�ve seen has running time �(n2).

In particular, PARTITION, given a subarray A[p . . r] of distinct elements in de-
creasing order, produces an empty partition in A[p . . q − 1], puts the pivot (orig-
inally in A[r]) into A[p], and produces a partition A[p + 1 . . r] with only one
fewer element than A[p . . r]. The recurrence for QUICKSORT becomes T (n) =
T (n − 1)+�(n), which has the solution T (n) = �(n2).

Solution to Exercise 7.2-5

The minimum depth follows a path that always takes the smaller part of the par-
tition�i.e., that multiplies the number of elements by α. One iteration reduces
the number of elements from n to αn, and i iterations reduces the number of ele-
ments to αi n. At a leaf, there is just one remaining element, and so at a minimum-
depth leaf of depth m, we have αmn = 1. Thus, αm = 1/n. Taking logs, we get
m lg α = − lg n, or m = − lg n/ lg α.

Similarly, maximum depth corresponds to always taking the larger part of the par-
tition, i.e., keeping a fraction 1 − α of the elements each time. The maximum
depth M is reached when there is one element left, that is, when (1 − α)Mn = 1.
Thus, M = − lg n/ lg(1− α).

All these equations are approximate because we are ignoring ßoors and ceilings.

Solution to Exercise 7.3-1

We may be interested in the worst-case performance, but in that case, the random-
ization is irrelevant: it won�t improve the worst case. What randomization can do
is make the chance of encountering a worst-case scenario small.

7-10 Solutions for Chapter 7: Quicksort

Solution to Exercise 7.4-2

To show that quicksort�s best-case running time is �(n lg n), we use a technique
similar to the one used in Section 7.4.1 to show that its worst-case running time
is O(n2).

Let T (n) be the best-case time for the procedure QUICKSORT on an input of size n.
We have the recurrence

T (n) = min
1≤q≤n−1

(T (q)+ T (n − q − 1))+�(n) .

We guess that T (n) ≥ cn lg n for some constant c. Substituting this guess into the
recurrence, we obtain
T (n) ≥ min

1≤q≤n−1
(cq lg q + c(n − q − 1) lg(n − q − 1))+�(n)

= c · min
1≤q≤n−1

(q lg q + (n − q − 1) lg(n − q − 1))+�(n) .

As we�ll show below, the expression q lg q + (n − q − 1) lg(n − q − 1) achieves a
minimum over the range 1 ≤ q ≤ n−1 when q = n−q−1, or q = (n−1)/2, since
the Þrst derivative of the expression with respect to q is 0 when q = (n− 1)/2 and
the second derivative of the expression is positive. (It doesn�t matter that q is not
an integer when n is even, since we�re just trying to determine the minimum value
of a function, knowing that when we constrain q to integer values, the function�s
value will be no lower.)

Choosing q = (n − 1)/2 gives us the bound
min

1≤q≤n−1
(q lg q + (n − q − 1) lg(n − q − 1)

≥ n − 1

2
lg

n − 1

2
+
(

n − n − 1

2
− 1

)
lg

(
n − n − 1

2
− 1

)
= (n − 1) lg

n − 1

2
.

Continuing with our bounding of T (n), we obtain, for n ≥ 2,

T (n) ≥ c(n − 1) lg
n − 1

2
+�(n)

= c(n − 1) lg(n − 1)− c(n − 1)+�(n)

= cn lg(n − 1)− c lg(n − 1)− c(n − 1)+�(n)

≥ cn lg(n/2)− c lg(n − 1)− c(n − 1)+�(n) (since n ≥ 2)

= cn lg n − cn − c lg(n − 1)− cn + c +�(n)

= cn lg n − (2cn + c lg(n − 1)− c)+�(n)

≥ cn lg n ,

since we can pick the constant c small enough so that the �(n) term dominates the
quantity 2cn + c lg(n − 1) − c. Thus, the best-case running time of quicksort is
�(n lg n).

Letting f (q) = q lg q + (n − q − 1) lg(n − q − 1), we now show how to Þnd
the minimum value of this function in the range 1 ≤ q ≤ n − 1. We need to Þnd
the value of q for which the derivative of f with respect to q is 0. We rewrite this
function as

Solutions for Chapter 7: Quicksort 7-11

f (q) = q ln q + (n − q − 1) ln(n − q − 1)

ln 2
,

and so

f ′(q) = d

dq

(
q ln q + (n − q − 1) ln(n − q − 1)

ln 2

)
= ln q + 1− ln(n − q − 1)− 1

ln 2

= ln q − ln(n − q − 1)

ln 2
.

The derivative f ′(q) is 0 when q = n − q − 1, or when q = (n − 1)/2. To verify
that q = (n − 1)/2 is indeed a minimum (not a maximum or an inßection point),
we need to check that the second derivative of f is positive at q = (n − 1)/2:

f ′′(q) = d

dq

(
ln q − ln(n − q − 1)

ln 2

)
= 1

ln 2

(
1

q
+ 1

n − q − 1

)
f ′′
(

n − 1

2

)
= 1

ln 2

(
2

n − 1
+ 2

n − 1

)
= 1

ln 2
· 4

n − 1
> 0 (since n ≥ 2) .

Solution to Problem 7-4

a. QUICKSORT ′ does exactly what QUICKSORT does; hence it sorts correctly.

QUICKSORT and QUICKSORT ′ do the same partitioning, and then each calls
itself with arguments A, p, q − 1. QUICKSORT then calls itself again, with
arguments A, q + 1, r . QUICKSORT′ instead sets p ← q + 1 and performs
another iteration of its while loop. This executes the same operations as calling
itself with A, q + 1, r , because in both cases, the Þrst and third arguments (A
and r) have the same values as before, and p has the old value of q + 1.

b. The stack depth of QUICKSORT′ will be �(n) on an n-element input array if
there are �(n) recursive calls to QUICKSORT′. This happens if every call to
PARTITION(A, p, r) returns q = r . The sequence of recursive calls in this
scenario is

QUICKSORT ′(A, 1, n) ,

QUICKSORT ′(A, 1, n − 1) ,

QUICKSORT ′(A, 1, n − 2) ,
...

QUICKSORT ′(A, 1, 1) .

Any array that is already sorted in increasing order will cause QUICKSORT′ to
behave this way.

7-12 Solutions for Chapter 7: Quicksort

c. The problem demonstrated by the scenario in part (b) is that each invocation of
QUICKSORT ′ calls QUICKSORT′ again with almost the same range. To avoid
such behavior, we must change QUICKSORT′ so that the recursive call is on a
smaller interval of the array. The following variation of QUICKSORT′ checks
which of the two subarrays returned from PARTITION is smaller and recurses
on the smaller subarray, which is at most half the size of the current array. Since
the array size is reduced by at least half on each recursive call, the number of
recursive calls, and hence the stack depth, is �(lg n) in the worst case. Note
that this method works no matter how partitioning is performed (as long as
the PARTITION procedure has the same functionality as the procedure given in
Section 7.1).

QUICKSORT ′′(A, p, r)

while p < r
do� Partition and sort the small subarray Þrst

q ← PARTITION(A, p, r)

if q − p < r − q
then QUICKSORT ′′(A, p, q − 1)

p ← q + 1
else QUICKSORT ′′(A, q + 1, r)

r ← q − 1

The expected running time is not affected, because exactly the same work is
done as before: the same partitions are produced, and the same subarrays are
sorted.

Lecture Notes for Chapter 8:
Sorting in Linear Time

Chapter 8 overview

How fast can we sort?

We will prove a lower bound, then beat it by playing a different game.

Comparison sorting

• The only operation that may be used to gain order information about a sequence
is comparison of pairs of elements.

• All sorts seen so far are comparison sorts: insertion sort, selection sort, merge
sort, quicksort, heapsort, treesort.

Lower bounds for sorting

Lower bounds

• �(n) to examine all the input.
• All sorts seen so far are �(n lg n).
• We�ll show that �(n lg n) is a lower bound for comparison sorts.

Decision tree

• Abstraction of any comparison sort.
• Represents comparisons made by

• a speciÞc sorting algorithm
• on inputs of a given size.

• Abstracts away everything else: control and data movement.
• We�re counting only comparisons.

8-2 Lecture Notes for Chapter 8: Sorting in Linear Time

For insertion sort on 3 elements:

≤ >

≤ >

1:2

2:3 1:3

〈1,2,3〉 1:3 〈2,1,3〉 2:3

〈1,3,2〉 〈3,1,2〉 〈3,2,1〉

≤ >

≤ >

≤ >

〈2,3,1〉

A[1] ≤ A[2] A[1] > A[2] (swap in array)

A[1] ≤ A[2]
A[2] > A[3]

A[1] > A[2]
A[1] > A[3]

A[1] ≤ A[2] ≤ A[3]

compare A[1] to A[2]

[Each internal node is labeled by indices of array elements from their original
positions. Each leaf is labeled by the permutation of orders that the algorithm
determines.]

How many leaves on the decision tree? There are ≥ n! leaves, because every
permutation appears at least once.

For any comparison sort,

• 1 tree for each n.
• View the tree as if the algorithm splits in two at each node, based on the infor-

mation it has determined up to that point.
• The tree models all possible execution traces.

What is the length of the longest path from root to leaf?

• Depends on the algorithm
• Insertion sort: �(n2)

• Merge sort: �(n lg n)

Lemma
Any binary tree of height h has ≤ 2h leaves.

In other words:

• l = # of leaves,
• h = height,
• Then l ≤ 2h .

(We�ll prove this lemma later.)

Why is this useful?

Theorem
Any decision tree that sorts n elements has height �(n lg n).

Lecture Notes for Chapter 8: Sorting in Linear Time 8-3

Proof

• l ≥ n!
• By lemma, n! ≤ l ≤ 2h or 2h ≥ n!
• Take logs: h ≥ lg(n!)
• Use Stirling�s approximation: n! > (n/e)n (by equation (3.16))

h ≥ lg(n/e)n

= n lg(n/e)

= n lg n − n lg e

= �(n lg n) . (theorem)

Now to prove the lemma:

Proof By induction on h.

Basis: h = 0. Tree is just one node, which is a leaf. 2h = 1.

Inductive step: Assume true for height = h − 1. Extend tree of height h − 1
by making as many new leaves as possible. Each leaf becomes parent to two new
leaves.

of leaves for height h = 2 · (# of leaves for height h − 1)

= 2 · 2h−1 (ind. hypothesis)

= 2h . (lemma)

Corollary
Heapsort and merge sort are asymptotically optimal comparison sorts.

Sorting in linear time

Non-comparison sorts.

Counting sort

Depends on a key assumption: numbers to be sorted are integers in{0, 1, . . . , k}.
Input: A[1 . . n], where A[j] ∈ {0, 1, . . . , k} for j = 1, 2, . . . , n. Array A and

values n and k are given as parameters.

Output: B[1 . . n], sorted. B is assumed to be already allocated and is given as a
parameter.

Auxiliary storage: C[0 . . k]

8-4 Lecture Notes for Chapter 8: Sorting in Linear Time

COUNTING-SORT(A, B, n, k)

for i ← 0 to k
do C[i] ← 0

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1

for i ← 1 to k
do C[i] ← C[i]+ C[i − 1]

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] − 1

Do an example for A = 21, 51, 31, 01, 22, 32, 02, 33

Counting sort is stable (keys with same value appear in same order in output as
they did in input) because of how the last loop works.

Analysis: �(n + k), which is �(n) if k = O(n).

How big a k is practical?

• Good for sorting 32-bit values? No.
• 16-bit? Probably not.
• 8-bit? Maybe, depending on n.
• 4-bit? Probably (unless n is really small).

Counting sort will be used in radix sort.

Radix sort

How IBM made its money. Punch card readers for census tabulation in early
1900�s. Card sorters, worked on one column at a time. It�s the algorithm for
using the machine that extends the technique to multi-column sorting. The human
operator was part of the algorithm!

Key idea: Sort least signiÞcant digits Þrst.

To sort d digits:

RADIX-SORT(A, d)

for i ← 1 to d
do use a stable sort to sort array A on digit i

Example:

326
453
608
835
751
435
704
690

326

453

608

835

751

435

704

690

326

453

608

835

751
435

704

690

326

453
608

835
751

435

704
690

sorted

Lecture Notes for Chapter 8: Sorting in Linear Time 8-5

Correctness:
• Induction on number of passes (i in pseudocode).
• Assume digits 1, 2, . . . , i − 1 are sorted.
• Show that a stable sort on digit i leaves digits 1, . . . , i sorted:

• If 2 digits in position i are different, ordering by position i is correct, and
positions 1, . . . , i − 1 are irrelevant.

• If 2 digits in position i are equal, numbers are already in the right order (by
inductive hypothesis). The stable sort on digit i leaves them in the right
order.

This argument shows why it�s so important to use a stable sort for intermediate
sort.

Analysis: Assume that we use counting sort as the intermediate sort.
• �(n + k) per pass (digits in range 0, . . . , k)
• d passes
• �(d(n + k)) total
• If k = O(n), time = �(dn).

How to break each key into digits?
• n words.
• b bits/word.
• Break into r-bit digits. Have d = �b/r�.
• Use counting sort, k = 2r − 1.

Example: 32-bit words, 8-bit digits. b = 32, r = 8, d = �32/8� = 4, k =
28 − 1 = 255.

• Time = �(b
r (n + 2r)).

How to choose r? Balance b/r and n + 2r . Choosing r ≈ lg n gives us
�
(

b
lg n (n + n)

) = �(bn/ lg n).

• If we choose r < lg n, then b/r > b/ lg n, and n + 2r term doesn�t improve.
• If we choose r > lg n, then n + 2r term gets big. Example: r = 2 lg n ⇒

2r = 22 lg n = (2lg n)2 = n2.

So, to sort 216 32-bit numbers, use r = lg 216 = 16 bits. �b/r� = 2 passes.

Compare radix sort to merge sort and quicksort:
• 1 million (220) 32-bit integers.
• Radix sort: �32/20� = 2 passes.
• Merge sort/quicksort: lg n = 20 passes.
• Remember, though, that each radix sort �pass� is really 2 passes�one to take

census, and one to move data.

How does radix sort violate the ground rules for a comparison sort?
• Using counting sort allows us to gain information about keys by means other

than directly comparing 2 keys.
• Used keys as array indices.

8-6 Lecture Notes for Chapter 8: Sorting in Linear Time

Bucket sort

Assumes the input is generated by a random process that distributes elements uni-
formly over [0, 1).

Idea:

• Divide [0, 1) into n equal-sized buckets.
• Distribute the n input values into the buckets.
• Sort each bucket.
• Then go through buckets in order, listing elements in each one.

Input: A[1 . . n], where 0 ≤ A[i] < 1 for all i .

Auxiliary array: B[0 . . n − 1] of linked lists, each list initially empty.

BUCKET-SORT(A, n)

for i ← 1 to n
do insert A[i] into list B[n · A[i]
]

for i ← 0 to n − 1
do sort list B[i] with insertion sort

concatenate lists B[0], B[1], . . . , B[n − 1] together in order
return the concatenated lists

Correctness: Consider A[i], A[j]. Assume without loss of generality that
A[i] ≤ A[j]. Then 	n · A[i]
 ≤ 	n · A[j]
. So A[i] is placed into the same bucket
as A[j] or into a bucket with a lower index.

• If same bucket, insertion sort Þxes up.
• If earlier bucket, concatenation of lists Þxes up.

Analysis:

• Relies on no bucket getting too many values.
• All lines of algorithm except insertion sorting take �(n) altogether.
• Intuitively, if each bucket gets a constant number of elements, it takes O(1)

time to sort each bucket ⇒ O(n) sort time for all buckets.
• We �expect� each bucket to have few elements, since the average is 1 element

per bucket.
• But we need to do a careful analysis.

DeÞne a random variable:

• ni = the number of elements placed in bucket B[i].

Because insertion sort runs in quadratic time, bucket sort time is

T (n) = �(n)+
n−1∑
i=0

O(n2
i) .

Lecture Notes for Chapter 8: Sorting in Linear Time 8-7

Take expectations of both sides:

E [T (n)] = E

[
�(n)+

n−1∑
i=0

O(n2
i)

]

= �(n)+
n−1∑
i=0

E [O(n2
i)] (linearity of expectation)

= �(n)+
n−1∑
i=0

O(E [n2
i]) (E [aX] = aE [X])

Claim
E [n2

i] = 2− (1/n) for i = 0, . . . , n − 1.

Proof of claim

DeÞne indicator random variables:

• Xij = I {A[j] falls in bucket i}
• Pr {A[j] falls in bucket i} = 1/n

• ni =
n∑

j=1

Xij

Then

E [n2
i] = E

[(
n∑

j=1

Xij

)2]

= E

[
n∑

j=1

X2
i j + 2

n−1∑
j=1

n∑
k= j+1

Xij Xik

]

=
n∑

j=1

E
[
X2

i j

]+ 2
n−1∑
j=1

n∑
k= j+1

E [Xij Xik] (linearity of expectation)

E
[
X2

i j

] = 02 · Pr {A[j] doesn�t fall in bucket i} + 12 · Pr {A[j] falls in bucket i}
= 0 ·

(
1− 1

n

)
+ 1 · 1

n

= 1

n

E [Xij Xik] for j �= k: Since j �= k, Xij and Xik are independent random variables

⇒ E [Xij Xik] = E [Xij] E [Xik]

= 1

n
· 1

n

= 1

n2

Therefore:

E [n2
i] =

n∑
j=1

1

n
+ 2

n−1∑
j=1

n∑
k= j+1

1

n2

8-8 Lecture Notes for Chapter 8: Sorting in Linear Time

= n · 1

n
+ 2

(
n

2

)
1

n2

= 1+ 2 · n(n − 1)

2
· 1

n2

= 1+ n − 1

n

= 1+ 1− 1

n

= 2− 1

n
(claim)

Therefore:

E [T (n)] = �(n)+
n−1∑
i=0

O(2− 1/n)

= �(n)+ O(n)

= �(n)

• Again, not a comparison sort. Used a function of key values to index into an
array.

• This is a probabilistic analysis�we used probability to analyze an algorithm
whose running time depends on the distribution of inputs.

• Different from a randomized algorithm, where we use randomization to impose
a distribution.

• With bucket sort, if the input isn�t drawn from a uniform distribution on [0, 1),
all bets are off (performance-wise, but the algorithm is still correct).

Solutions for Chapter 8:
Sorting in Linear Time

Solution to Exercise 8.1-3

If the sort runs in linear time for m input permutations, then the height h of the
portion of the decision tree consisting of the m corresponding leaves and their
ancestors is linear.

Use the same argument as in the proof of Theorem 8.1 to show that this is impos-
sible for m = n!/2, n!/n, or n!/2n.

We have 2h ≥ m, which gives us h ≥ lg m. For all the possible m�s given here,
lg m = �(n lg n), hence h = �(n lg n).

In particular,

lg
n!

2
= lg n!− 1 ≥ n lg n − n lg e − 1

lg
n!

n
= lg n!− lg n ≥ n lg n − n lg e − lg n

lg
n!

2n
= lg n!− n ≥ n lg n − n lg e − n

Solution to Exercise 8.1-4

Let S be a sequence of n elements divided into n/k subsequences each of length k
where all of the elements in any subsequence are larger than all of the elements
of a preceding subsequence and smaller than all of the elements of a succeeding
subsequence.

Claim
Any comparison-based sorting algorithm to sort s must take �(n lg k) time in the
worst case.

Proof First notice that, as pointed out in the hint, we cannot prove the lower
bound by multiplying together the lower bounds for sorting each subsequence.
That would only prove that there is no faster algorithm that sorts the subsequences
independently. This was not what we are asked to prove; we cannot introduce any
extra assumptions.

8-10 Solutions for Chapter 8: Sorting in Linear Time

Now, consider the decision tree of height h for any comparison sort for S. Since
the elements of each subsequence can be in any order, any of the k! permutations
correspond to the Þnal sorted order of a subsequence. And, since there are n/k such
subsequences, each of which can be in any order, there are (k!)n/k permutations
of S that could correspond to the sorting of some input order. Thus, any decision
tree for sorting S must have at least (k!)n/k leaves. Since a binary tree of height h
has no more than 2h leaves, we must have 2h ≥ (k!)n/k or h ≥ lg((k!)n/k). We
therefore obtain

h ≥ lg((k!)n/k

= (n/k) lg(k!)

≥ (n/k) lg((k/2)k/2)

= (n/2) lg(k/2) .

The third line comes from k! having its k/2 largest terms being at least k/2 each.
(We implicitly assume here that k is even. We could adjust with ßoors and ceilings
if k were odd.)

Since there exists at least one path in any decision tree for sorting S that has length
at least (n/2) lg(k/2), the worst-case running time of any comparison-based sorting
algorithm for S is �(n lg k).

Solution to Exercise 8.2-3

[The following solution also answers Exercise 8.2-2.]

Notice that the correctness argument in the text does not depend on the order in
which A is processed. The algorithm is correct no matter what order is used!

But the modiÞed algorithm is not stable. As before, in the Þnal for loop an element
equal to one taken from A earlier is placed before the earlier one (i.e., at a lower
index position) in the output arrray B. The original algorithm was stable because
an element taken from A later started out with a lower index than one taken earlier.
But in the modiÞed algorithm, an element taken from A later started out with a
higher index than one taken earlier.

In particular, the algorithm still places the elements with value k in positions
C[k − 1]+ 1 through C[k], but in the reverse order of their appearance in A.

Solution to Exercise 8.2-4

Compute the C array as is done in counting sort. The number of integers in the
range [a . . b] is C[b]− C[a − 1], where we interpret C[−1] as 0.

Solutions for Chapter 8: Sorting in Linear Time 8-11

Solution to Exercise 8.3-2

Insertion sort is stable. When inserting A[j] into the sorted sequence A[1 . . . j−1],
we do it the following way: compare A[j] to A[i], starting with i = j−1 and going
down to i = 1. Continue at long as A[j] < A[i].

Merge sort as deÞned is stable, because when two elements compared are equal, the
tie is broken by taking the element from array L which keeps them in the original
order.

Heapsort and quicksort are not stable.

One scheme that makes a sorting algorithm stable is to store the index of each
element (the element�s place in the original ordering) with the element. When
comparing two elements, compare them by their values and break ties by their
indices.

Additional space requirements: For n elements, their indices are 1 . . . n. Each can
be written in lg n bits, so together they take O(n lg n) additional space.

Additional time requirements: The worst case is when all elements are equal. The
asymptotic time does not change because we add a constant amount of work to
each comparison.

Solution to Exercise 8.3-3

Basis: If d = 1, there�s only one digit, so sorting on that digit sorts the array.

Inductive step: Assuming that radix sort works for d − 1 digits, we�ll show that it
works for d digits.

Radix sort sorts separately on each digit, starting from digit 1. Thus, radix sort of
d digits, which sorts on digits 1, . . . , d is equivalent to radix sort of the low-order
d − 1 digits followed by a sort on digit d . By our induction hypothesis, the sort of
the low-order d−1 digits works, so just before the sort on digit d , the elements are
in order according to their low-order d − 1 digits.

The sort on digit d will order the elements by their dth digit. Consider two ele-
ments, a and b, with dth digits ad and bd respectively.

• If ad < bd , the sort will put a before b, which is correct, since a < b regardless
of the low-order digits.

• If ad > bd , the sort will put a after b, which is correct, since a > b regardless
of the low-order digits.

• If ad = bd , the sort will leave a and b in the same order they were in, because
it is stable. But that order is already correct, since the correct order of a and b
is determined by the low-order d − 1 digits when their dth digits are equal, and
the elements are already sorted by their low-order d − 1 digits.

If the intermediate sort were not stable, it might rearrange elements whose dth
digits were equal�elements that were in the right order after the sort on their
lower-order digits.

8-12 Solutions for Chapter 8: Sorting in Linear Time

Solution to Exercise 8.3-4

Treat the numbers as 2-digit numbers in radix n. Each digit ranges from 0 to n− 1.
Sort these 2-digit numbers with radix sort.

There are 2 calls to counting sort, each taking �(n + n) = �(n) time, so that the
total time is �(n).

Solution to Exercise 8.4-2

The worst-case running time for the bucket-sort algorithm occurs when the assump-
tion of uniformly distributed input does not hold. If, for example, all the input ends
up in the Þrst bucket, then in the insertion sort phase it needs to sort all the input,
which takes O(n2) time.

A simple change that will preserve the linear expected running time and make the
worst-case running time O(n lg n) is to use a worst-case O(n lg n)-time algorithm
like merge sort instead of insertion sort when sorting the buckets.

Solution to Problem 8-1

a. For a comparison algorithm A to sort, no two input permutations can reach the
same leaf of the decision tree, so there must be at least n! leaves reached in TA,
one for each possible input permutation. Since A is a deterministic algorithm, it
must always reach the same leaf when given a particular permutation as input,
so at most n! leaves are reached (one for each permutation). Therefore exactly
n! leaves are reached, one for each input permutation.

These n! leaves will each have probability 1/n!, since each of the n! possible
permutations is the input with the probability 1/n!. Any remaining leaves will
have probability 0, since they are not reached for any input.

Without loss of generality, we can assume for the rest of this problem that paths
leading only to 0-probability leaves aren�t in the tree, since they cannot affect
the running time of the sort. That is, we can assume that TA consists of only the
n! leaves labeled 1/n! and their ancestors.

b. If k > 1, then the root of T is not a leaf. This implies that all of T �s leaves
are leaves in LT and RT . Since every leaf at depth h in LT or RT has depth
h + 1 in T , D(T) must be the sum of D(LT), D(RT), and k, the total number
of leaves. To prove this last assertion, let dT (x) = depth of node x in tree T .
Then,

D(T) =
∑

x∈leaves(T)

dT (x)

=
∑

x∈leaves(LT)

dT (x)+
∑

x∈leaves(RT)

dT (x)

Solutions for Chapter 8: Sorting in Linear Time 8-13

=
∑

x∈leaves(LT)

(dLT (x)+ 1)+
∑

x∈leaves(RT)

(dRT (x)+ 1)

=
∑

x∈leaves(LT)

dLT (x)+
∑

x∈leaves(RT)

dRT (x)+
∑

x∈leaves(T)

1

= D(LT)+ D(RT)+ k .

c. To show that d(k) = min1≤i≤k−1 {d(i)+ d(k − i)+ k}we will show separately
that

d(k) ≤ min
1≤i≤k−1

{d(i)+ d(k − i)+ k}
and

d(k) ≥ min
1≤i≤k−1

{d(i)+ d(k − i)+ k} .

• To show that d(k) ≤ min1≤i≤k−1 {d(i)+ d(k − i)+ k}, we need only show
that d(k) ≤ d(i)+ d(k − i)+ k, for i = 1, 2, . . . , k − 1. For any i from 1 to
k − 1 we can Þnd trees RT with i leaves and LT with k − i leaves such that
D(RT) = d(i) and D(LT) = d(k − i). Construct T such that RT and LT
are the right and left subtrees of T �s root respectively. Then

d(k) ≤ D(T) (by deÞnition of d as min D(T) value)

= D(RT)+ D(LT)+ k (by part (b))

= d(i)+ d(k − i)+ k (by choice of RT and LT) .
• To show that d(k) ≥ min1≤i≤k−1 {d(i)+ d(k − i)+ k}, we need only show

that d(k) ≥ d(i) + d(k − i) + k, for some i in {1, 2, . . . , k − 1}. Take the
tree T with k leaves such that D(T) = d(k), let RT and LT be T �s right
and left subtree, respecitvely, and let i be the number of leaves in RT . Then
k − i is the number of leaves in LT and

d(k) = D(T) (by choice of T)

= D(RT)+ D(LT)+ k (by part (b))

≥ d(i)+ d(k − i)+ k (by deÞntion of d as min D(T) value) .

Neither i nor k − i can be 0 (and hence 1 ≤ i ≤ k − 1), since if one of these
were 0, either RT or LT would contain all k leaves of T , and that k-leaf
subtree would have a D equal to D(T) − k (by part (b)), contradicting the
choice of T as the k-leaf tree with the minimum D.

d. Let fk(i) = i lg i + (k − i) lg(k − i). To Þnd the value of i that minimizes fk ,
Þnd the i for which the derivative of fk with respect to i is 0:

f ′k(i) = d

di

(
i ln i + (k − i) ln(k − i)

ln 2

)
= ln i + 1− ln(k − i)− 1

ln 2

= ln i − ln(k − i)

ln 2
is 0 at i = k/2. To verify this is indeed a minimum (not a maximum), check
that the second derivative of fk is positive at i = k/2:

f ′′k (i) = d

di

(
ln i − ln(k − i)

ln 2

)

8-14 Solutions for Chapter 8: Sorting in Linear Time

= 1

ln 2

(
1

i
+ 1

k − i

)
.

f ′′k (k/2) = 1

ln 2

(
2

k
+ 2

k

)
= 1

ln 2
· 4

k
> 0 since k > 1 .

Now we use substitution to prove d(k) = �(k lg k). The base case of the
induction is satisÞed because d(1) ≥ 0 = c · 1 · lg 1 for any constant c. For the
inductive step we assume that d(i) ≥ ci lg i for 1 ≤ i ≤ k− 1, where c is some
constant to be determined.

d(k) = min
1≤i≤k−1

{d(i)+ d(k − i)+ k}
≥ min

1≤i≤k−1
{c(i lg i + (k − i) lg(k − i))+ k}

= min
1≤i≤k−1

{c fk(i)+ k}

= c
(k

2
lg

k

2

(
k − k

2

)
lg
(

k − k

2

))
+ k

= ck lg
(k

2

)
+ k

= c(k lg k − k)+ k

= ck lg k + (k − ck)

≥ ck lg k if c ≤ 1 ,

and so d(k) = �(k lg k).

e. Using the result of part (d) and the fact that TA (as modiÞed in our solution to
part (a)) has n! leaves, we can conclude that

D(TA) ≥ d(n!) = �(n! lg(n!)) .

D(TA) is the sum of the decision-tree path lengths for sorting all input per-
mutations, and the path lengths are proportional to the run time. Since the n!
permutations have equal probability 1/n!, the expected time to sort n random
elements (1 input permutation) is the total time for all permutations divided
by n!:

�(n! lg(n!))

n!
= �(lg(n!)) = �(n lg n) .

f. We will show how to modify a randomized decision tree (algorithm) to deÞne a
deterministic decision tree (algorithm) that is at least as good as the randomized
one in terms of the average number of comparisons.

At each randomized node, pick the child with the smallest subtree (the subtree
with the smallest average number of comparisons on a path to a leaf). Delete all
the other children of the randomized node and splice out the randomized node
itself.

The deterministic algorithm corresponding to this modiÞed tree still works, be-
cause the randomized algorithm worked no matter which path was taken from
each randomized node.

Solutions for Chapter 8: Sorting in Linear Time 8-15

The average number of comparisons for the modiÞed algorithm is no larger
than the average number for the original randomized tree, since we discarded
the higher-average subtrees in each case. In particular, each time we splice out
a randomized node, we leave the overall average less than or equal to what it
was, because

• the same set of input permutations reaches the modiÞed subtree as before, but
those inputs are handled in less than or equal to average time than before, and

• the rest of the tree is unmodiÞed.

The randomized algorithm thus takes at least as much time on average as the
corresponding deterministic one. (We�ve shown that the expected running time
for a deterministic comparison sort is �(n lg n), hence the expected time for a
randomized comparison sort is also �(n lg n).)

Solution to Problem 8-3

a. The usual, unadorned radix sort algorithm will not solve this problem in the
required time bound. The number of passes, d , would have to be the number
of digits in the largest integer. Suppose that there are m integers; we always
have m ≤ n. In the worst case, we would have one integer with n/2 digits and
n/2 integers with one digit each. We assume that the range of a single digit is
constant. Therefore, we would have d = n/2 and m = n/2 + 1, and so the
running time would be �(dm) = �(n2).

Let us assume without loss of generality that all the integers are positive and
have no leading zeros. (If there are negative integers or 0, deal with the positive
numbers, negative numbers, and 0 separately.) Under this assumption, we can
observe that integers with more digits are always greater than integers with
fewer digits. Thus, we can Þrst sort the integers by number of digits (using
counting sort), and then use radix sort to sort each group of integers with the
same length. Noting that each integer has between 1 and n digits, let mi be the
number of integers with i digits, for i = 1, 2, . . . , n. Since there are n digits
altogether, we have

∑n
i=1 i · mi = n.

It takes O(n) time to compute how many digits all the integers have and, once
the numbers of digits have been computed, it takes O(m + n) = O(n) time
to group the integers by number of digits. To sort the group with mi digits by
radix sort takes �(i · mi) time. The time to sort all groups, therefore, is

n∑
i=1

�(i · mi) = �

(
n∑

i=1

i · mi

)
= �(n) .

b. One way to solve this problem is by a radix sort from right to left. Since the
strings have varying lengths, however, we have to pad out all strings that are
shorter than the longest string. The padding is on the right end of the string,
and it�s with a special character that is lexicographically less than any other
character (e.g., in C, the character ’\0’ with ASCII value 0). Of course, we

8-16 Solutions for Chapter 8: Sorting in Linear Time

don�t have to actually change any string; if we want to know the j th character of
a string whose length is k, then if j > k, the j th character is the pad character.

Unfortunately, this scheme does not always run in the required time bound.
Suppose that there are m strings and that the longest string has d characters.
In the worst case, one string has n/2 characters and, before padding, n/2
strings have one character each. As in part (a), we would have d = n/2 and
m = n/2+ 1. We still have to examine the pad characters in each pass of radix
sort, even if we don�t actually create them in the strings. Assuming that the
range of a single character is constant, the running time of radix sort would be
�(dm) = �(n2).

To solve the problem in O(n) time, we use the property that, if the Þrst letter
of string x is lexicographically less that the Þrst letter of string y, then x is
lexicographically less than y, regardless of the lengths of the two strings. We
take advantage of this property by sorting the strings on the Þrst letter, using
counting sort. We take an empty string as a special case and put it Þrst. We
gather together all strings with the same Þrst letter as a group. Then we recurse,
within each group, based on each string with the Þrst letter removed.

The correctness of this algorithm is straightforward. Analyzing the running
time is a bit trickier. Let us count the number of times that each string is sorted
by a call of counting sort. Suppose that the i th string, si , has length li . Then
si is sorted by at most li + 1 counting sorts. (The �+1� is because it may have
to be sorted as an empty string at some point; for example, ab and a end up in
the same group in the Þrst pass and are then ordered based on b and the empty
string in the second pass. The string a is sorted its length, 1, time plus one more
time.) A call of counting sort on t strings takes �(t) time (remembering that
the number of different characters on which we are sorting is a constant.) Thus,
the total time for all calls of counting sort is

O

(
m∑

i=1

(li + 1)

)
= O

(
m∑

i=1

li + m

)
= O(n + m)

= O(n) ,

where the second line follows from
∑m

i=1 li = n, and the last line is because
m ≤ n.

Solution to Problem 8-4

a. Compare each red jug with each blue jug. Since there are n red jugs and n blue
jugs, that will take �(n2) comparisons in the worst case.

b. To solve the problem, an algorithm has to perform a series of comparisons
until it has enough information to determine the matching. We can view the
computation of the algorithm in terms of a decision tree. Every internal node
is labeled with two jugs (one red, one blue) which we compare, and has three
outgoing edges (red jug smaller, same size, or larger than the blue jug). The
leaves are labeled with a unique matching of jugs.

Solutions for Chapter 8: Sorting in Linear Time 8-17

The height of the decision tree is equal to the worst-case number of comparisons
the algorithm has to make to determine the matching. To bound that size, let us
Þrst compute the number of possible matchings for n red and n blue jugs.

If we label the red jugs from 1 to n and we also label the blue jugs from 1
to n before starting the comparisons, every outcome of the algorithm can be
represented as a set

{(i, π(i)) : 1 ≤ i ≤ n and π is a permutation on {1, . . . , n}} ,

which contains the pairs of red jugs (Þrst component) and blue jugs (second
component) that are matched up. Since every permutation π corresponds to a
different outcome, there must be exactly n! different results.

Now we can bound the height h of our decision tree. Every tree with a branch-
ing factor of 3 (every inner node has at most three children) has at most 3h

leaves. Since the decison tree must have at least n! children, it follows that

3h ≥ n! ≥ (n/e)n ⇒ h ≥ n log3 n − n log3 e = �(n lg n) .

So any algorithm solving the problem must use �(n lg n) comparisons.

c. Assume that the red jugs are labeled with numbers 1, 2, . . . , n and so are the
blue jugs. The numbers are arbitrary and do not correspond to the volumes of
jugs, but are just used to refer to the jugs in the algorithm description. Moreover,
the output of the algorithm will consist of n distinct pairs (i, j), where the red
jug i and the blue jug j have the same volume.

The procedure MATCH-JUGS takes as input two sets representing jugs to be
matched: R ⊆ {1, . . . , n}, representing red jugs, and B ⊆ {1, . . . , n}, rep-
resenting blue jugs. We will call the procedure only with inputs that can be
matched; one necessary condition is that |R| = |B|.
MATCH-JUGS(R, B)

if |R| = 0 � Sets are empty
then return

if |R| = 1 � Sets contain just one jug each
then let R = {r} and B = {b}

output �(r, b)�
return

else r ← a randomly chosen jug in R
compare r to every jug of B
B< ← the set of jugs in B that are smaller than r
B> ← the set of jugs in B that are larger than r
b ← the one jug in B with the same size as r
compare b to every jug of R −{r}
R< ← the set of jugs in R that are smaller than b
R> ← the set of jugs in R that are larger than b
output �(r, b)�
MATCH-JUGS(R<, B<)

MATCH-JUGS(R>, B>)

Correctness can be seen as follows (remember that |R| = |B| in each call).
Once we pick r randomly from R, there will be a matching among the jugs in

8-18 Solutions for Chapter 8: Sorting in Linear Time

volume smaller than r (which are in the sets R< and B<), and likewise between
the jugs larger than r (which are in R> and B>). Termination is also easy to see:
since |R<| + |R>| < |R| in every recursive step, the size of the Þrst parameter
reduces with every recursive call. It eventually must reach 0 or 1, in which case
the recursion terminates.

What about the running time? The analysis of the expected number of com-
parisons is similar to that of the quicksort algorithm in Section 7.4.2. Let us
order the jugs as r1, . . . , rn and b1, . . . , bn where ri < ri+1 and bi < bi+1 for
i = 1, . . . , n, and ri = bi . Our analysis uses indicator random variables

Xij = I {red jug ri is compared to blue jug bj } .

As in quicksort, a given pair ri and bj is compared at most once. When we
compare ri to every jug in B, jug ri will not be put in either R< or R>. When
we compare bi to every jug in R − {ri }, jug bi is not put into either B< or B>.
The total number of comparisons is

X =
n−1∑
i=1

n∑
j=i+1

Xij .

To calculate the expected value of X , we follow the quicksort analysis to arrive
at

E [X] =
n−1∑
i=1

n∑
j=i+1

Pr {ri is compared to bj } .

As in the quicksort analysis, once we choose a jug rk such that ri < rk < b j , we
will put ri in R< and bj in R>, and so ri and bj will never be compared again.
Let us denote Rij = {ri , . . . , r j }. Then jugs ri and bj will be compared if and
only if the Þrst jug in Rij to be chosen is either ri or r j .

Still following the quicksort analysis, until a jug from Rij is chosen, the entire
set Rij is together. Any jug in Rij is equally likely to be Þrst one chosen. Since
|Rij | = j − i + 1, the probability of any given jug being the Þrst one chosen
in Rij is 1/(j−i+1). The remainder of the analysis is the same as the quicksort
analysis, and we arrive at the solution of O(n lg n) comparisons.

Just like in quicksort, in the worst case we always choose the largest (or small-
est) jug to partition the sets, which reduces the set sizes by only 1. The running
time then obeys the recurrence T (n) = T (n − 1) + �(n), and the number of
comparisons we make in the worst case is T (n) = �(n2).

Lecture Notes for Chapter 9:
Medians and Order Statistics

Chapter 9 overview

• i th order statistic is the i th smallest element of a set of n elements.
• The minimum is the Þrst order statistic (i = 1).
• The maximum is the nth order statistic (i = n).
• A median is the �halfway point� of the set.
• When n is odd, the median is unique, at i = (n + 1)/2.
• When n is even, there are two medians:

• The lower median, at i = n/2, and
• The upper median, at i = n/2+ 1.
• We mean lower median when we use the phrase �the median.�

The selection problem:

Input: A set A of n distinct numbers and a number i , with 1 ≤ i ≤ n.

Output: The element x ∈ A that is larger than exactly i − 1 other elements in A.
In other words, the i th smallest element of A.

The selection problem can be solved in O(n lg n) time.

• Sort the numbers using an O(n lg n)-time algorithm, such as heapsort or merge
sort.

• Then return the i th element in the sorted array.

There are faster algorithms, however.

• First, we�ll look at the problem of selecting the minimum and maximum of a
set of elements.

• Then, we�ll look at a simple general selection algorithm with a time bound of
O(n) in the average case.

• Finally, we�ll look at a more complicated general selection algorithm with a
time bound of O(n) in the worst case.

9-2 Lecture Notes for Chapter 9: Medians and Order Statistics

Minimum and maximum

We can easily obtain an upper bound of n−1 comparisons for Þnding the minimum
of a set of n elements.

• Examine each element in turn and keep track of the smallest one.
• This is the best we can do, because each element, except the minimum, must be

compared to a smaller element at least once.

The following pseudocode Þnds the minimum element in array A[1 . . n]:

MINIMUM(A, n)

min ← A[1]
for i ← 2 to n

do if min > A[i]
then min ← A[i]

return min

The maximum can be found in exactly the same way by replacing the > with < in
the above algorithm.

Simultaneous minimum and maximum

Some applications need both the minimum and maximum of a set of elements.

• For example, a graphics program may need to scale a set of (x, y) data to Þt
onto a rectangular display. To do so, the program must Þrst Þnd the minimum
and maximum of each coordinate.

A simple algorithm to Þnd the minimum and maximum is to Þnd each one indepen-
dently. There will be n − 1 comparisons for the minimum and n − 1 comparisons
for the maximum, for a total of 2n − 2 comparisons. This will result in �(n) time.

In fact, at most 3	n/2
 comparisons are needed to Þnd both the minimum and
maximum:
• Maintain the minimum and maximum of elements seen so far.
• Don�t compare each element to the minimum and maximum separately.
• Process elements in pairs.
• Compare the elements of a pair to each other.
• Then compare the larger element to the maximum so far, and compare the

smaller element to the minimum so far.

This leads to only 3 comparisons for every 2 elements.

Setting up the initial values for the min and max depends on whether n is odd or
even.
• If n is even, compare the Þrst two elements and assign the larger to max and the

smaller to min. Then process the rest of the elements in pairs.
• If n is odd, set both min and max to the Þrst element. Then process the rest of

the elements in pairs.

Lecture Notes for Chapter 9: Medians and Order Statistics 9-3

Analysis of the total number of comparisons

• If n is even, we do 1 initial comparison and then 3(n− 2)/2 more comparisons.

of comparisons = 3(n − 2)

2
+ 1

= 3n − 6

2
+ 1

= 3n

2
− 3+ 1

= 3n

2
− 2 .

• If n is odd, we do 3(n − 1)/2 = 3	n/2
 comparisons.

In either case, the maximum number of comparisons is ≤ 3	n/2
.

Selection in expected linear time

Selection of the i th smallest element of the array A can be done in �(n) time.

The function RANDOMIZED-SELECT uses RANDOMIZED-PARTITION from the
quicksort algorithm in Chapter 7. RANDOMIZED-SELECT differs from quicksort
because it recurses on one side of the partition only.

RANDOMIZED-SELECT(A, p, r, i)

if p = r
then return A[p]

q ← RANDOMIZED-PARTITION(A, p, r)

k ← q − p + 1
if i = k � pivot value is the answer
then return A[q]

elseif i < k
then return RANDOMIZED-SELECT(A, p, q − 1, i)

else return RANDOMIZED-SELECT(A, q + 1, r, i − k)

After the call to RANDOMIZED-PARTITION, the array is partitioned into two sub-
arrays A[p . . q − 1] and A[q + 1 . . r], along with a pivot element A[q].

• The elements of subarray A[p . . q − 1] are all ≤ A[q].
• The elements of subarray A[q + 1 . . r] are all > A[q].
• The pivot element is the kth element of the subarray A[p . . r], where k =

q − p + 1.
• If the pivot element is the i th smallest element (i.e., i = k), return A[q].
• Otherwise, recurse on the subarray containing the i th smallest element.

• If i < k, this subarray is A[p . . q−1], and we want the i th smallest element.
• If i > k, this subarray is A[q + 1 . . r] and, since there are k elements in

A[p . . r] that precede A[q + 1 . . r], we want the (i − k)th smallest element
of this subarray.

9-4 Lecture Notes for Chapter 9: Medians and Order Statistics

Analysis

Worst-case running time: �(n2), because we could be extremely unlucky and
always recurse on a subarray that is only 1 element smaller than the previous sub-
array.

Expected running time: RANDOMIZED-SELECT works well on average. Because
it is randomized, no particular input brings out the worst-case behavior consis-
tently.

The running time of RANDOMIZED-SELECT is a random variable that we denote
by T (n). We obtain an upper bound on E[T (n)] as follows:

• RANDOMIZED-PARTITION is equally likely to return any element of A as the
pivot.

• For each k such that 1 ≤ k ≤ n, the subarray A[p . . q] has k elements (all ≤
pivot) with probability 1/n. [Note that we�re now considering a subarray that
includes the pivot, along with elements less than the pivot.]

• For k = 1, 2, . . . , n, deÞne indicator random variable

Xk = I {subarray A[p . . q] has exactly k elements} .

• Since Pr {subarray A[p . . q] has exactly k elements} = 1/n, Lemma 5.1 says
that E [Xk] = 1/n.

• When we call RANDOMIZED-SELECT, we don�t know if it will terminate im-
mediately with the correct answer, recurse on A[p . . q − 1], or recurse on
A[q + 1 . . r]. It depends on whether the i th smallest element is less than, equal
to, or greater than the pivot element A[q].

• To obtain an upper bound, we assume that T (n) is monotonically increasing
and that the i th smallest element is always in the larger subarray.

• For a given call of RANDOMIZED-SELECT, Xk = 1 for exactly one value of k,
and Xk = 0 for all other k.

• When Xk = 1, the two subarrays have sizes k − 1 and n − k.
• For a subproblem of size n, RANDOMIZED-PARTITION takes O(n) time. [Ac-

tually, it takes �(n) time, but O(n) sufÞces, since we�re obtaining only an upper
bound on the expected running time.]

• Therefore, we have the recurrence

T (n) ≤
n∑

k=1

Xk · (T (max(k − 1, n − k))+ O(n))

=
n∑

k=1

Xk · T (max(k − 1, n − k))+ O(n) .

• Taking expected values gives
E [T (n)]

≤ E

[
n∑

k=1

Xk · T (max(k − 1, n − k))+ O(n)

]

=
n∑

k=1

E [Xk · T (max(k − 1, n − k))]+ O(n) (linearity of expectation)

Lecture Notes for Chapter 9: Medians and Order Statistics 9-5

=
n∑

k=1

E [Xk] · E [T (max(k − 1, n − k))]+ O(n) (equation (C.23))

=
n∑

k=1

1

n
· E [T (max(k − 1, n − k))]+ O(n) .

• We rely on Xk and T (max(k − 1, n − k)) being independent random variables
in order to apply equation (C.23).

• Looking at the expression max(k − 1, n − k), we have

max(k − 1, n − k) =
{

k − 1 if k > �n/2� ,

n − k if k ≤ �n/2� .

• If n is even, each term from T (�n/2�) up to T (n − 1) appears exactly twice
in the summation.

• If n is odd, these terms appear twice and T (n/2
) appears once.
• Either way,

E [T (n)] ≤ 2

n

n−1∑
k=	n/2

E [T (k)]+ O(n) .

• Solve this recurrence by substitution:
• Guess that T (n) ≤ cn for some constant c that satisÞes the initial conditions

of the recurrence.
• Assume that T (n) = O(1) for n < some constant. We�ll pick this constant

later.
• Also pick a constant a such that the function described by the O(n) term is

bounded from above by an for all n > 0.
• Using this guess and constants c and a, we have

E [T (n)] ≤ 2

n

n−1∑
k=	n/2

ck + an

= 2c

n

(
n−1∑
k=1

k −
	n/2
−1∑

k=1

k

)
+ an

= 2c

n

(
(n − 1)n

2
− (n/2
 − 1) 	n/2

2

)
+ an

≤ 2c

n

(
(n − 1)n

2
− (n/2− 2)(n/2− 1)

2

)
+ an

= 2c

n

(
n2 − n

2
− n2/4− 3n/2+ 2

2

)
+ an

= c

n

(
3n2

4
+ n

2
− 2

)
+ an

= c

(
3n

4
+ 1

2
− 2

n

)
+ an

≤ 3cn

4
+ c

2
+ an

= cn −
(cn

4
− c

2
− an

)
.

9-6 Lecture Notes for Chapter 9: Medians and Order Statistics

• To complete this proof, we choose c such that
cn/4− c/2− an ≥ 0

cn/4− an ≥ c/2

n(c/4− a) ≥ c/2

n ≥ c/2

c/4− a

n ≥ 2c

c − 4a
.

• Thus, as long as we assume that T (n) = O(1) for n < 2c/(c− 4a), we have
E [T (n)] = O(n).

Therefore, we can determine any order statistic in linear time on average.

Selection in worst-case linear time

We can Þnd the i th smallest element in O(n) time in the worst case. We�ll describe
a procedure SELECT that does so.

SELECT recursively partitions the input array.

• Idea: Guarantee a good split when the array is partitioned.
• Will use the deterministic procedure PARTITION, but with a small modiÞca-

tion. Instead of assuming that the last element of the subarray is the pivot, the
modiÞed PARTITION procedure is told which element to use as the pivot.

SELECT works on an array of n > 1 elements. It executes the following steps:

1. Divide the n elements into groups of 5. Get �n/5� groups: 	n/5
 groups with
exactly 5 elements and, if 5 does not divide n, one group with the remaining
n mod 5 elements.

2. Find the median of each of the �n/5� groups:

• Run insertion sort on each group. Takes O(1) time per group since each
group has ≤ 5 elements.

• Then just pick the median from each group, in O(1) time.

3. Find the median x of the �n/5� medians by a recursive call to SELECT. (If
�n/5� is even, then follow our convention and Þnd the lower median.)

4. Using the modiÞed version of PARTITION that takes the pivot element as input,
partition the input array around x . Let x be the kth element of the array after
partitioning, so that there are k−1 elements on the low side of the partition and
n − k elements on the high side.

5. Now there are three possibilities:

• If i = k, just return x .
• If i < k, return the i th smallest element on the low side of the partition by

making a recursive call to SELECT.
• If i > k, return the (i−k)th smallest element on the high side of the partition

by making a recursive call to SELECT.

Lecture Notes for Chapter 9: Medians and Order Statistics 9-7

Analysis

Start by getting a lower bound on the number of elements that are greater than the
partitioning element x :

x

[Each group is a column. Each white circle is the median of a group, as found
in step 2. Arrows go from larger elements to smaller elements, based on what we
know after step 4. Elements in the region on the lower right are known to be greater
than x .]

• At least half of the medians found in step 2 are ≥ x .
• Look at the groups containing these medians that are ≥ x . All of them con-

tribute 3 elements that are > x (the median of the group and the 2 elements
in the group greater than the group�s median), except for 2 of the groups: the
group containing x (which has only 2 elements > x) and the group with < 5
elements.

• Forget about these 2 groups. That leaves ≥
⌈

1

2

⌈n

5

⌉⌉
− 2 groups with 3 ele-

ments known to be > x .
• Thus, we know that at least

3

(⌈
1

2

⌈n

5

⌉⌉
− 2

)
≥ 3n

10
− 6

elements are > x .

Symmetrically, the number of elements that are < x is at least 3n/10− 6.

Therefore, when we call SELECT recursively in step 5, it�s on ≤ 7n/10 + 6 ele-
ments.

Develop a recurrence for the worst-case running time of SELECT:

• Steps 1, 2, and 4 each take O(n) time:

• Step 1: making groups of 5 elements takes O(n) time.
• Step 2: sorting �n/5� groups in O(1) time each.
• Step 4: partitioning the n-element array around x takes O(n) time.

• Step 3 takes time T (�n/5�).
• Step 5 takes time ≤ T (7n/10 + 6), assuming that T (n) is monotonically in-

creasing.

9-8 Lecture Notes for Chapter 9: Medians and Order Statistics

• Assume that T (n) = O(1) for small enough n. We�ll use n < 140 as �small
enough.� Why 140? We�ll see why later.

• Thus, we get the recurrence

T (n) ≤
{

O(1) if n < 140 ,

T (�n/5�)+ T (7n/10+ 6)+ O(n) if n ≥ 140 .

Solve this recurrence by substitution:
• Inductive hypothesis: T (n) ≤ cn for some constant c and all n > 0.
• Assume that c is large enough that T (n) ≤ cn for all n < 140. So we are

concerned only with the case n ≥ 140.
• Pick a constant a such that the function described by the O(n) term in the

recurrence is ≤ an for all n > 0.
• Substitute the inductive hypothesis in the right-hand side of the recurrence:

T (n) ≤ c �n/5� + c(7n/10+ 6)+ an

≤ cn/5+ c + 7cn/10+ 6c + an

= 9cn/10+ 7c + an

= cn + (−cn/10+ 7c + an) .

• This last quantity is ≤ cn if
−cn/10+ 7c + an ≤ 0

cn/10− 7c ≥ an

cn − 70c ≥ 10an

c(n − 70) ≥ 10an

c ≥ 10a(n/(n − 70)) .

• Because we assumed that n ≥ 140, we have n/(n − 70) ≤ 2.
• Thus, 20a ≥ 10a(n/(n−70)), so choosing c ≥ 20a gives c ≥ 10a(n/(n−70)),

which in turn gives us the condition we need to show that T (n) ≤ cn.
• We conclude that T (n) = O(n), so that SELECT runs in linear time in all cases.
• Why 140? We could have used any integer strictly greater than 70.

• Observe that for n > 70, the fraction n/(n − 70) decreases as n increases.
• We picked n ≥ 140 so that the fraction would be ≤ 2, which is an easy

constant to work with.
• We could have picked, say, n ≥ 71, so that for all n ≥ 71, the fraction would

be ≤ 71/(71 − 70) = 71. Then we would have had 20a ≥ 710a, so we�d
have needed to choose c ≥ 710a.

Notice that SELECT and RANDOMIZED-SELECT determine information about the
relative order of elements only by comparing elements.
• Sorting requires �(n lg n) time in the comparison model.
• Sorting algorithms that run in linear time need to make assumptions about their

input.
• Linear-time selection algorithms do not require any assumptions about their

input.
• Linear-time selection algorithms solve the selection problem without sorting

and therefore are not subject to the �(n lg n) lower bound.

Solutions for Chapter 9:
Medians and Order Statistics

Solution to Exercise 9.1-1

The smallest of n numbers can be found with n − 1 comparisons by conducting a
tournament as follows: Compare all the numbers in pairs. Only the smaller of each
pair could possibly be the smallest of all n, so the problem has been reduced to that
of Þnding the smallest of �n/2� numbers. Compare those numbers in pairs, and so
on, until there�s just one number left, which is the answer.

To see that this algorithm does exactly n− 1 comparisons, notice that each number
except the smallest loses exactly once. To show this more formally, draw a binary
tree of the comparisons the algorithm does. The n numbers are the leaves, and each
number that came out smaller in a comparison is the parent of the two numbers that
were compared. Each non-leaf node of the tree represents a comparison, and there
are n − 1 internal nodes in an n-leaf full binary tree (see Exercise (B.5-3)), so
exactly n − 1 comparisons are made.

In the search for the smallest number, the second smallest number must have come
out smallest in every comparison made with it until it was eventually compared
with the smallest. So the second smallest is among the elements that were com-
pared with the smallest during the tournament. To Þnd it, conduct another tourna-
ment (as above) to Þnd the smallest of these numbers. At most �lg n� (the height
of the tree of comparisons) elements were compared with the smallest, so Þnding
the smallest of these takes �lg n� − 1 comparisons in the worst case.

The total number of comparisons made in the two tournaments was

n − 1+ �lg n� − 1 = n + �lg n� − 2

in the worst case.

Solution to Exercise 9.3-1

For groups of 7, the algorithm still works in linear time. The number of elements
greater than x (and similarly, the number less than x) is at least

4

(⌈
1

2

⌈n

7

⌉⌉
− 2

)
≥ 2n

7
− 8 ,

9-10 Solutions for Chapter 9: Medians and Order Statistics

and the recurrence becomes

T (n) ≤ T (�n/7�)+ T (5n/7+ 8)+ O(n) ,

which can be shown to be O(n) by substitution, as for the groups of 5 case in the
text.

For groups of 3, however, the algorithm no longer works in linear time. The number
of elements greater than x , and the number of elements less than x , is at least

2

(⌈
1

2

⌈n

3

⌉⌉
− 2

)
≥ n

3
− 4 ,

and the recurrence becomes

T (n) ≤ T (�n/3�)+ T (2n/3+ 4)+ O(n) ,

which does not have a linear solution.

We can prove that the worst-case time for groups of 3 is �(n lg n). We do so by
deriving a recurrence for a particular case that takes �(n lg n) time.

In counting up the number of elements greater than x (and similarly, the num-
ber less than x), consider the particular case in which there are exactly

⌈
1
2

⌈
n
3

⌉⌉
groups with medians ≥ x and in which the �leftover� group does contribute 2
elements greater than x . Then the number of elements greater than x is exactly
2
(⌈

1
2

⌈
n
3

⌉⌉− 1
) + 1 (the −1 discounts x�s group, as usual, and the +1 is con-

tributed by x�s group) = 2�n/6� − 1, and the recursive step for elements ≤ x has
n − (2 �n/6� − 1) ≥ n − (2(n/6 + 1) − 1) = 2n/3 − 1 elements. Observe also
that the O(n) term in the recurrence is really �(n), since the partitioning in step 4
takes �(n) (not just O(n)) time. Thus, we get the recurrence

T (n) ≥ T (�n/3�)+ T (2n/3− 1)+�(n) ≥ T (n/3)+ T (2n/3− 1)+�(n) ,

from which you can show that T (n) ≥ cn lg n by substitution. You can also see
that T (n) is nonlinear by noticing that each level of the recursion tree sums to n.

[In fact, any odd group size ≥ 5 works in linear time.]

Solution to Exercise 9.3-3

A modiÞcation to quicksort that allows it to run in O(n lg n) time in the worst case
uses the deterministic PARTITION algorithm that was modiÞed to take an element
to partition around as an input parameter.

SELECT takes an array A, the bounds p and r of the subarray in A, and the rank i
of an order statistic, and in time linear in the size of the subarray A[p . . r] it returns
the i th smallest element in A[p . . r].

BEST-CASE-QUICKSORT(A, p, r)

if p < r
then i ← 	(r − p + 1)/2

x ← SELECT(A, p, r, i)
q ← PARTITION(x)

BEST-CASE-QUICKSORT(A, p, q − 1)

BEST-CASE-QUICKSORT(A, q + 1, r)

Solutions for Chapter 9: Medians and Order Statistics 9-11

For an n-element array, the largest subarray that BEST-CASE-QUICKSORT recurses
on has n/2 elements. This situation occurs when n = r − p + 1 is even; then the
subarray A[q+1 . . r] has n/2 elements, and the subarray A[p . . q−1] has n/2−1
elements.

Because BEST-CASE-QUICKSORT always recurses on subarrays that are at most
half the size of the original array, the recurrence for the worst-case running time is
T (n) ≤ 2T (n/2)+�(n) = O(n lg n).

Solution to Exercise 9.3-5

We assume that are given a procedure MEDIAN that takes as parameters an ar-
ray A and subarray indices p and r , and returns the value of the median element of
A[p . . r] in O(n) time in the worst case.

Given MEDIAN, here is a linear-time algorithm SELECT′ for Þnding the i th small-
est element in A[p . . r]. This algorithm uses the deterministic PARTITION algo-
rithm that was modiÞed to take an element to partition around as an input parame-
ter.

SELECT′(A, p, r, i)

if p = r
then return A[p]

x ← MEDIAN(A, p, r)

q ← PARTITION(x)

k ← q − p + 1
if i = k
then return A[q]

elseif i < k
then return SELECT′(A, p, q − 1, i)

else return SELECT′(A, q + 1, r, i − k)

Because x is the median of A[p . . r], each of the subarrays A[p . . q − 1] and
A[q + 1 . . r] has at most half the number of elements of A[p . . r]. The recurrence
for the worst-case running time of SELECT′ is T (n) ≤ T (n/2)+ O(n) = O(n).

Solution to Exercise 9.3-8

Let�s start out by supposing that the median (the lower median, since we know we
have an even number of elements) is in X . Let�s call the median value m, and let�s
suppose that it�s in X[k]. Then k elements of X are less than or equal to m and
n− k elements of X are greater than or equal to m. We know that in the two arrays
combined, there must be n elements less than or equal to m and n elements greater
than or equal to m, and so there must be n − k elements of Y that are less than or
equal to m and n − (n − k) = k elements of Y that are greater than or equal to m.

9-12 Solutions for Chapter 9: Medians and Order Statistics

Thus, we can check that X[k] is the lower median by checking whether Y [n−k] ≤
X[k] ≤ Y [n − k + 1]. A boundary case occurs for k = n. Then n − k = 0, and
there is no array entry Y [0]; we only need to check that X[n] ≤ Y [1].

Now, if the median is in X but is not in X[k], then the above condition will not
hold. If the median is in X[k′], where k′ < k, then X[k] is above the median, and
Y [n − k + 1] < X[k]. Conversely, if the median is in X[k′′], where k′′ > k, then
X[k] is below the median, and X[k] < Y [n − k].

Thus, we can use a binary search to determine whether there is an X[k] such that
either k < n and Y [n−k] ≤ X[k] ≤ Y [n−k+1] or k = n and X[k] ≤ Y [n−k+1];
if we Þnd such an X[k], then it is the median. Otherwise, we know that the median
is in Y , and we use a binary search to Þnd a Y [k] such that either k < n and
X[n − k] ≤ Y [k] ≤ X[n − k + 1] or k = n and Y [k] ≤ X[n − k + 1]; such a
Y [k] is the median. Since each binary search takes O(lg n) time, we spend a total
of O(lg n) time.

Here�s how we write the algorithm in pseudocode:

TWO-ARRAY-MEDIAN(X, Y)

n ← length[X] � n also equals length[Y]
median ← FIND-MEDIAN(X, Y, n, 1, n)

if median = NOT-FOUND

then median ← FIND-MEDIAN(Y, X, n, 1, n)

return median

FIND-MEDIAN(A, B, n, low, high)

if low > high
then return NOT-FOUND

else k ← 	(low+ high)/2

if k = n and A[n] ≤ B[1]
then return A[n]

elseif k < n and B[n − k] ≤ A[k] ≤ B[n − k + 1]
then return A[k]

elseif A[k] > B[n − k + 1]
then return FIND-MEDIAN(A, B, n, low, k − 1)

else return FIND-MEDIAN(A, B, n, k + 1, high)

Solution to Exercise 9.3-9

In order to Þnd the optimal placement for Professor Olay�s pipeline, we need only
Þnd the median(s) of the y-coordinates of his oil wells, as the following proof
explains.

Claim
The optimal y-coordinate for Professor Olay�s east-west oil pipeline is as follows:

• If n is even, then on either the oil well whose y-coordinate is the lower median
or the one whose y-coordinate is the upper median, or anywhere between them.

• If n is odd, then on the oil well whose y-coordinate is the median.

Solutions for Chapter 9: Medians and Order Statistics 9-13

Proof We examine various cases. In each case, we will start out with the pipeline
at a particular y-coordinate and see what happens when we move it. We�ll denote
by s the sum of the north-south spurs with the pipeline at the starting location,
and s′ will denote the sum after moving the pipeline.

We start with the case in which n is even. Let us start with the pipeline somewhere
on or between the two oil wells whose y-coordinates are the lower and upper me-
dians. If we move the pipeline by a vertical distance d without crossing either of
the median wells, then n/2 of the wells become d farther from the pipeline and
n/2 become d closer, and so s′ = s + dn/2− dn/2 = s; thus, all locations on or
between the two medians are equally good.

Now suppose that the pipeline goes through the oil well whose y-coordinate is the
upper median. What happens when we increase the y-coordinate of the pipeline
by d > 0 units, so that it moves above the oil well that achieves the upper median?
All oil wells whose y-coordinates are at or below the upper median become d units
farther from the pipeline, and there are at least n/2 + 1 such oil wells (the upper
median, and every well at or below the lower median). There are at most n/2 − 1
oil wells whose y-coordinates are above the upper median, and each of these oil
wells becomes at most d units closer to the pipeline when it moves up. Thus, we
have a lower bound on s′ of s′ ≥ s + d(n/2 + 1) − d(n/2 − 1) = s + 2d > s.
We conclude that moving the pipeline up from the oil well at the upper median
increases the total spur length. A symmetric argument shows that if we start with
the pipeline going through the oil well whose y-coordinate is the lower median and
move it down, then the total spur length increases.

We see, therefore, that when n is even, an optimal placement of the pipeline is
anywhere on or between the two medians.

Now we consider the case when n is odd. We start with the pipeline going through
the oil well whose y-coordinate is the median, and we consider what happens when
we move it up by d > 0 units. All oil wells at or below the median become d units
farther from the pipeline, and there are at least (n+ 1)/2 such wells (the one at the
median and the (n − 1)/2 at or below the median. There are at most (n − 1)/2 oil
wells above the median, and each of these becomes at most d units closer to the
pipeline. We get a lower bound on s′ of s′ ≥ s + d(n + 1)/2 − d(n − 1)/2 =
s + d > s, and we conclude that moving the pipeline up from the oil well at the
median increases the total spur length. A symmetric argument shows that moving
the pipeline down from the median also increases the total spur length, and so the
optimal placement of the pipeline is on the median. (claim)

Since we know we are looking for the median, we can use the linear-time median-
Þnding algorithm.

Solution to Problem 9-1

We assume that the numbers start out in an array.

a. Sort the numbers using merge sort or heapsort, which take �(n lg n) worst-case
time. (Don�t use quicksort or insertion sort, which can take �(n2) time.) Put

9-14 Solutions for Chapter 9: Medians and Order Statistics

the i largest elements (directly accessible in the sorted array) into the output
array, taking �(i) time.

Total worst-case running time: �(n lg n + i) = �(n lg n) (because i ≤ n).

b. Implement the priority queue as a heap. Build the heap using BUILD-HEAP,
which takes �(n) time, then call HEAP-EXTRACT-MAX i times to get the i
largest elements, in �(i lg n) worst-case time, and store them in reverse order
of extraction in the output array. The worst-case extraction time is �(i lg n)

because

• i extractions from a heap with O(n) elements takes i · O(lg n) = O(i lg n)

time, and
• half of the i extractions are from a heap with ≥ n/2 elements, so those i/2

extractions take (i/2)�(lg(n/2)) = �(i lg n) time in the worst case.

Total worst-case running time: �(n + i lg n).

c. Use the SELECT algorithm of Section 9.3 to Þnd the i th largest number in �(n)

time. Partition around that number in �(n) time. Sort the i largest numbers in
�(i lg i) worst-case time (with merge sort or heapsort).

Total worst-case running time: �(n + i lg i).

Note that method (c) is always asymptotically at least as good as the other two
methods, and that method (b) is asymptotically at least as good as (a). (Com-
paring (c) to (b) is easy, but it is less obvious how to compare (c) and (b) to (a).
(c) and (b) are asymptotically at least as good as (a) because n, i lg i , and i lg n are
all O(n lg n). The sum of two things that are O(n lg n) is also O(n lg n).)

Solution to Problem 9-2

a. The median x of the elements x1, x2, . . . , xn , is an element x = xk satisfying
|{xi : 1 ≤ i ≤ n and xi < x}| ≤ n/2 and |{xi : 1 ≤ i ≤ n and xi > x}| ≤ n/2.
If each element xi is assigned a weight wi = 1/n, then we get∑
xi<x

wi =
∑
xi<x

1

n

= 1

n
·
∑
xi<x

1

= 1

n
· |{xi : 1 ≤ i ≤ n and xi < x}|

≤ 1

n
· n

2

= 1

2
,

and∑
xi>x

wi =
∑
xi>x

1

n

Solutions for Chapter 9: Medians and Order Statistics 9-15

= 1

n
·
∑
xi>x

1

= 1

n
· |{xi : 1 ≤ i ≤ n and xi > x}|

≤ 1

n
· n

2

= 1

2
,

which proves that x is also the weighted median of x1, x2, . . . , xn with weights
wi = 1/n, for i = 1, 2, . . . , n.

b. We Þrst sort the n elements into increasing order by xi values. Then we scan
the array of sorted xi �s, starting with the smallest element and accumulating
weights as we scan, until the total exceeds 1/2. The last element, say xk , whose
weight caused the total to exceed 1/2, is the weighted median. Notice that the
total weight of all elements smaller than xk is less than 1/2, because xk was
the Þrst element that caused the total weight to exceed 1/2. Similarly, the total
weight of all elements larger than xk is also less than 1/2, because the total
weight of all the other elements exceeds 1/2.

The sorting phase can be done in O(n lg n) worst-case time (using merge sort
or heapsort), and the scanning phase takes O(n) time. The total running time
in the worst case, therefore, is O(n lg n).

c. We Þnd the weighted median in �(n) worst-case time using the �(n) worst-
case median algorithm in Section 9.3. (Although the Þrst paragraph of the
section only claims an O(n) upper bound, it is easy to see that the more precise
running time of �(n) applies as well, since steps 1, 2, and 4 of SELECT actually
take �(n) time.)

The weighted-median algorithm works as follows. If n ≤ 2, we just return
the brute-force solution. Otherwise, we proceed as follows. We Þnd the actual
median xk of the n elements and then partition around it. We then compute the
total weights of the two halves. If the weights of the two halves are each strictly
less than 1/2, then the weighted median is xk . Otherwise, the weighted median
should be in the half with total weight exceeding 1/2. The total weight of the
�light� half is lumped into the weight of xk , and the search continues within the
half that weighs more than 1/2. Here�s pseudocode, which takes as input a set
X = {x1, x2, . . . , xn}:

9-16 Solutions for Chapter 9: Medians and Order Statistics

WEIGHTED-MEDIAN(X)

if n = 1
then return x1

elseif n = 2
then if w1 ≥ w2

then return x1

else return x2

else
Þnd the median xk of X = {x1, x2, . . . , xn}
partition the set X around xk

compute WL =∑xi<xk
wi and WG =∑xi>xk

wi

if WL < 1/2 and WG < 1/2
then return xk

elseif WL > 1/2
then wk ← wk + WG

X ′ ← {xi ∈ X : xi ≤ xk}
return WEIGHTED-MEDIAN(X ′)

else wk ← wk + WL

X ′ ← {xi ∈ X : xi ≥ xk}
return WEIGHTED-MEDIAN(X ′)

The recurrence for the worst-case running time of WEIGHTED-MEDIAN is
T (n) = T (n/2+1)+�(n), since there is at most one recursive call on half the
number of elements, plus the median element xk , and all the work preceding the
recursive call takes �(n) time. The solution of the recurrence is T (n) = �(n).

d. Let the n points be denoted by their coordinates x1, x2, . . . , xn , let the corre-
sponding weights be w1, w2, . . . , wn, and let x = xk be the weighted median.
For any point p, let f (p) =∑n

i=1 wi |p − xi |; we want to Þnd a point p such
that f (p) is minimum. Let y be any point (real number) other than x . We show
the optimality of the weighted median x by showing that f (y)− f (x) ≥ 0. We
examine separately the cases in which y > x and x > y. For any x and y, we
have

f (y)− f (x) =
n∑

i=1

wi |y − xi | −
n∑

i=1

wi |x − xi |

=
n∑

i=1

wi(|y − xi | − |x − xi |) .

When y > x , we bound the quantity |y − xi | − |x − xi | from below by exam-
ining three cases:

1. x < y ≤ xi : Here, |x − y|+ |y − xi | = |x − xi | and |x − y| = y− x , which
imply that |y − xi | − |x − xi | = − |x − y| = x − y.

2. x < xi ≤ y: Here, |y − xi | ≥ 0 and |xi − x| ≤ y − x , which imply that
|y − xi | − |x − xi | ≥ −(y − x) = x − y.

3. xi ≤ x < y: Here, |x − xi |+ |y − x| = |y − xi | and |y − x| = y− x , which
imply that |y − xi | − |x − xi | = |y − x| = y − x .

Solutions for Chapter 9: Medians and Order Statistics 9-17

Separating out the Þrst two cases, in which x < xi , from the third case, in which
x ≥ xi , we get

f (y)− f (x) =
n∑

i=1

wi(|y − xi | − |x − xi |)

≥
∑
x<xi

wi(x − y)+
∑
x≥xi

wi(y − x)

= (y − x)

(∑
x≥xi

wi −
∑
x<xi

wi

)
.

The property that
∑

xi<x wi < 1/2 implies that
∑

x≥xi
wi ≥ 1/2. This fact,

combined with y − x > 0 and
∑

x<xi
wi ≤ 1/2, yields that f (y)− f (x) ≥ 0.

When x > y, we again bound the quantity |y − xi | − |x − xi | from below by
examining three cases:

1. xi ≤ y < x : Here, |y − xi |+ |x − y| = |x − xi | and |x − y| = x− y, which
imply that |y − xi | − |x − xi | = − |x − y| = y − x .

2. y ≤ xi < x : Here, |y − xi | ≥ 0 and |x − xi | ≤ x − y, which imply that
|y − xi | − |x − xi | ≥ −(x − y) = y − x .

3. y < x ≤ xi . Here, |x − y|+ |x − xi | = |y − xi | and |x − y| = x− y, which
imply that |y − xi | − |x − xi | = |x − y| = x − y.

Separating out the Þrst two cases, in which x > xi , from the third case, in which
x ≤ xi , we get

f (y)− f (x) =
n∑

i=1

wi(|y − xi | − |x − xi |)

≥
∑
x>xi

wi(y − x)+
∑
x≤xi

wi(x − y)

= (x − y)

(∑
x≤xi

wi −
∑
x>xi

wi

)
.

The property that
∑

xi>x wi ≤ 1/2 implies that
∑

x≤xi
wi > 1/2. This fact,

combined with x − y > 0 and
∑

x>xi
wi < 1/2, yields that f (y)− f (x) > 0.

e. We are given n 2-dimensional points p1, p2, . . . , pn , where each pi is a pair of
real numbers pi = (xi , yi), and positive weights w1, w2, . . . , wn. The goal is
to Þnd a point p = (x, y) that minimizes the sum

f (x, y) =
n∑

i=1

wi (|x − xi | + |y − yi |) .

We can express the cost function of the two variables, f (x, y), as the sum of
two functions of one variable each: f (x, y) = g(x) + h(y), where g(x) =∑n

i=1 wi |x − xi |, and h(y) = ∑n
i=1 wi |y − yi |. The goal of Þnding a point

p = (x, y) that minimizes the value of f (x, y) can be achieved by treating
each dimension independently, because g does not depend on y and h does not
depend on x . Thus,

min
x,y

f (x, y) = min
x,y

(g(x)+ h(y))

9-18 Solutions for Chapter 9: Medians and Order Statistics

= min
x

(
min

y
(g(x)+ h(y))

)
= min

x

(
g(x)+min

y
h(y)

)
= min

x
g(x)+min

y
h(y) .

Consequently, Þnding the best location in 2 dimensions can be done by Þnding
the weighted median xk of the x-coordinates and then Þnding the weighted
median yj of the y-coordinates. The point (xk, y j) is an optimal solution for
the 2-dimensional post-ofÞce location problem.

Solution to Problem 9-3

a. Our algorithm relies on a particular property of SELECT: that not only does it
return the i th smallest element, but that it also partitions the input array so that
the Þrst i positions contain the i smallest elements (though not necessarily in
sorted order). To see that SELECT has this property, observe that there are only
two ways in which returns a value: when n = 1, and when immediately after
partitioning in step 4, it Þnds that there are exactly i elements on the low side
of the partition.

Taking the hint from the book, here is our modiÞed algorithm to select the i th
smallest element of n elements. Whenever it is called with i ≥ n/2, it just calls
SELECT and returns its result; in this case, Ui(n) = T (n).

When i < n/2, our modiÞed algorithm works as follows. Assume that the input
is in a subarray A[p+ 1 . . p+ n], and let m = 	n/2
. In the initial call, p = 1.

1. Divide the input as follows. If n is even, divide the input into two parts:
A[p + 1 . . p + m] and A[p + m + 1 . . p + n]. If n is odd, divide the input
into three parts: A[p+ 1 . . p+m], A[p+m+ 1 . . p+ n− 1], and A[p+ n]
as a leftover piece.

2. Compare A[p+ i] and A[p+ i +m] for i = 1, 2, . . . , m, putting the smaller
of the the two elements into A[p + i + m] and the larger into A[p + i].

3. Recursively Þnd the i th smallest element in A[p+m+1 . . p+n], but with an
additional action performed by the partitioning procedure: whenever it ex-
changes A[j] and A[k] (where p+m+1 ≤ j, k ≤ p+2m), it also exchanges
A[j−m] and A[k−m]. The idea is that after recursively Þnding the i th small-
est element in A[p+m+1 . . p+n], the subarray A[p + m + 1 . . p+m+ i]
contains the i smallest elements that had been in A[p +m + 1 . . p + n] and
the subarray A[p + 1 . . p + i] contains their larger counterparts, as found in
step 1. The i th smallest element of A[p + 1 . . p + n] must be either one of
the i smallest, as placed into A[p+m+ 1 . . p+m+ i], or it must be one of
the larger counterparts, as placed into A[p + 1 . . p + i].

4. Collect the subarrays A[p + 1 . . p + i] and A[p +m + 1 . . p +m + i] into
a single array B[1 . . 2i], call SELECT to Þnd the i th smallest element of B,
and return the result of this call to SELECT.

The number of comparisons in each step is as follows:

Solutions for Chapter 9: Medians and Order Statistics 9-19

1. No comparisons.
2. m = 	n/2
 comparisons.
3. Since we recurse on A[p + m + 1 . . p + n], which has �n/2� elements, the

number of comparisons is Ui(�n/2�).
4. Since we call SELECT on an array with 2i elements, the number of compar-

isons is T (2i).

Thus, when i < n/2, the total number of comparisons is	n/2
 +Ui(�n/2�)+
T (2i).

b. We show by substitution that if i < n/2, then Ui(n) = n+O(T (2i) lg(n/ i)). In
particular, we shall show that Ui(n) ≤ n+ cT (2i) lg(n/ i)− d(lg lg n)T (2i) =
n + cT (2i) lg n − cT (2i) lg i − d(lg lg n)T (2i) for some positive constant c,
some positive constant d to be chosen later, and n ≥ 4. We have

Ui(n) = 	n/2
 +Ui(�n/2�)+ T (2i)

≤ 	n/2
 + �n/2� + cT (2i) lg �n/2� − cT (2i) lg i

− d(lg lg �n/2�)T (2i)

= n + cT (2i) lg �n/2� − cT (2i) lg i − d(lg lg�n/2�)T (2i)

≤ n + cT (2i) lg(n/2+ 1)− cT (2i) lg i − d(lg lg(n/2))T (2i)

= n + cT (2i) lg(n/2+ 1)− cT (2i) lg i − d(lg(lg n − 1))T (2i)

≤ n + cT (2i) lg n − cT (2i) lg i − d(lg lg n)T (2i)

if cT (2i) lg(n/2+ 1)− d(lg(lg n − 1))T (2i) ≤ cT (2i) lg n − d(lg lg n)T (2i).
Simple algebraic manipulations gives the following sequence of equivalent con-
ditions:

cT (2i) lg(n/2+ 1)− d(lg(lg n − 1))T (2i) ≤ cT (2i) lg n − d(lg lg n)T (2i)

c lg(n/2+ 1)− d(lg(lg n − 1)) ≤ c lg n − d(lg lg n)

c(lg(n/2+ 1)− lg n) ≤ d(lg(lg n − 1)− lg lg n)

c

(
lg

n/2+ 1

n

)
≤ d lg

lg n − 1

lg n

c

(
lg

(
1

2
+ 1

n

))
≤ d lg

lg n − 1

lg n

Observe that 1/2+1/n decreases as n increases, but (lg n−1)/ lg n increases as
n increases. When n = 4, we have 1/2+1/n = 3/4 and (lg n−1)/ lg n = 1/2.
Thus, we just need to choose d such that c lg(3/4) ≤ d lg(1/2) or, equivalently,
c lg(3/4) ≤ −d . Multiplying both sides by −1, we get d ≤ −c lg(3/4) =
c lg(4/3). Thus, any value of d that is at most c lg(4/3) sufÞces.

c. When i is a constant, T (2i) = O(1) and lg(n/ i) = lg n− lg i = O(lg n). Thus,
when i is a constant less than n/2, we have that

Ui(n) = n + O(T (2i) lg(n/ i))

= n + O(O(1) · O(lg n))

= n + O(lg n) .

d. Suppose that i = n/k for k ≥ 2. Then i ≤ n/2. If k > 2, then i < n/2, and we
have

Ui(n) = n + O(T (2i) lg(n/ i))

9-20 Solutions for Chapter 9: Medians and Order Statistics

= n + O(T (2n/k) lg(n/(n/k))

= n + O(T (2n/k) lg k) .

If k = 2, then n = 2i and lg k = 1. We have

Ui(n) = T (n)

= n + (T (n)− n)

≤ n + (T (2i)− n)

= n + (T (2n/k)− n)

= n + (T (2n/k) lg k − n)

= n + O(T (2n/k) lg k) .

Lecture Notes for Chapter 11:
Hash Tables

Chapter 11 overview

Many applications require a dynamic set that supports only the dictionary opera-
tions INSERT, SEARCH, and DELETE. Example: a symbol table in a compiler.

A hash table is effective for implementing a dictionary.

• The expected time to search for an element in a hash table is O(1), under some
reasonable assumptions.

• Worst-case search time is �(n), however.

A hash table is a generalization of an ordinary array.

• With an ordinary array, we store the element whose key is k in position k of the
array.

• Given a key k, we Þnd the element whose key is k by just looking in the kth
position of the array. This is called direct addressing.

• Direct addressing is applicable when we can afford to allocate an array with
one position for every possible key.

We use a hash table when we do not want to (or cannot) allocate an array with one
position per possible key.

• Use a hash table when the number of keys actually stored is small relative to
the number of possible keys.

• A hash table is an array, but it typically uses a size proportional to the number
of keys to be stored (rather than the number of possible keys).

• Given a key k, don�t just use k as the index into the array.
• Instead, compute a function of k, and use that value to index into the array. We

call this function a hash function.

Issues that we�ll explore in hash tables:

• How to compute hash functions. We�ll look at the multiplication and division
methods.

• What to do when the hash function maps multiple keys to the same table entry.
We�ll look at chaining and open addressing.

11-2 Lecture Notes for Chapter 11: Hash Tables

Direct-address tables

Scenario:

• Maintain a dynamic set.
• Each element has a key drawn from a universe U = {0, 1, . . . , m − 1} where

m isn�t too large.
• No two elements have the same key.

Represent by a direct-address table, or array, T [0 . . . m − 1]:

• Each slot, or position, corresponds to a key in U .
• If there�s an element x with key k, then T [k] contains a pointer to x .
• Otherwise, T [k] is empty, represented by NIL.

T

U
(universe of keys)

K
(actual
keys)

 2
3

5
8

1

9
4

0
7

6 2

3

5

8

key satellite data

2

0

1

3

4

5

6

7

8

9

Dictionary operations are trivial and take O(1) time each:

DIRECT-ADDRESS-SEARCH(T, k)

return T [k]

DIRECT-ADDRESS-INSERT(T, x)

T [key[x]] ← x

DIRECT-ADDRESS-DELETE(T, x)

T [key[x]] ← NIL

Hash tables

The problem with direct addressing is if the universe U is large, storing a table of
size |U | may be impractical or impossible.

Often, the set K of keys actually stored is small, compared to U , so that most of
the space allocated for T is wasted.

Lecture Notes for Chapter 11: Hash Tables 11-3

• When K is much smaller than U , a hash table requires much less space than a
direct-address table.

• Can reduce storage requirements to �(|K |).
• Can still get O(1) search time, but in the average case, not the worst case.

Idea: Instead of storing an element with key k in slot k, use a function h and store
the element in slot h(k).

• We call h a hash function.
• h : U → {0, 1, . . . , m − 1}, so that h(k) is a legal slot number in T .
• We say that k hashes to slot h(k).

Collisions: When two or more keys hash to the same slot.

• Can happen when there are more possible keys than slots (|U | > m).
• For a given set K of keys with |K | ≤ m, may or may not happen. DeÞnitely

happens if |K | > m.
• Therefore, must be prepared to handle collisions in all cases.
• Use two methods: chaining and open addressing.
• Chaining is usually better than open addressing. We�ll examine both.

Collision resolution by chaining

Put all elements that hash to the same slot into a linked list.

T

U
(universe of keys)

K
(actual
keys)

k1

k2 k3

k4 k5

k6

k7

k8

k1

k2

k3

k4

k5

k6

k7

k8

[This Þgure shows singly linked lists. If we want to delete elements, it�s better to
use doubly linked lists.]

• Slot j contains a pointer to the head of the list of all stored elements that hash
to j [or to the sentinel if using a circular, doubly linked list with a sentinel] ,

• If there are no such elements, slot j contains NIL.

11-4 Lecture Notes for Chapter 11: Hash Tables

How to implement dictionary operations with chaining:

• Insertion:

CHAINED-HASH-INSERT(T, x)

insert x at the head of list T [h(key[x])]

• Worst-case running time is O(1).
• Assumes that the element being inserted isn�t already in the list.
• It would take an additional search to check if it was already inserted.

• Search:

CHAINED-HASH-SEARCH(T, k)

search for an element with key k in list T [h(k)]

Running time is proportional to the length of the list of elements in slot h(k).

• Deletion:

CHAINED-HASH-DELETE(T, x)

delete x from the list T [h(key[x])]

• Given pointer x to the element to delete, so no search is needed to Þnd this
element.

• Worst-case running time is O(1) time if the lists are doubly linked.
• If the lists are singly linked, then deletion takes as long as searching, be-

cause we must Þnd x�s predecessor in its list in order to correctly update next
pointers.

Analysis of hashing with chaining

Given a key, how long does it take to Þnd an element with that key, or to determine
that there is no element with that key?

• Analysis is in terms of the load factor α = n/m:

• n = # of elements in the table.
• m = # of slots in the table = # of (possibly empty) linked lists.
• Load factor is average number of elements per linked list.
• Can have α < 1, α = 1, or α > 1.

• Worst case is when all n keys hash to the same slot⇒ get a single list of length n
⇒ worst-case time to search is �(n), plus time to compute hash function.

• Average case depends on how well the hash function distributes the keys among
the slots.

We focus on average-case performance of hashing with chaining.

• Assume simple uniform hashing: any given element is equally likely to hash
into any of the m slots.

Lecture Notes for Chapter 11: Hash Tables 11-5

• For j = 0, 1, . . . , m − 1, denote the length of list T [j] by nj . Then
n = n0 + n1 + · · · + nm−1.

• Average value of n j is E [n j] = α = n/m.
• Assume that we can compute the hash function in O(1) time, so that the time

required to search for the element with key k depends on the length nh(k) of the
list T [h(k)].

We consider two cases:

• If the hash table contains no element with key k, then the search is unsuccessful.
• If the hash table does contain an element with key k, then the search is success-

ful.

[In the theorem statements that follow, we omit the assumptions that we�re resolv-
ing collisions by chaining and that simple uniform hashing applies.]

Unsuccessful search:

Theorem
An unsuccessful search takes expected time �(1+ α).

Proof Simple uniform hashing ⇒ any key not already in the table is equally likely
to hash to any of the m slots.

To search unsuccessfully for any key k, need to search to the end of the list T [h(k)].
This list has expected length E[nh(k)] = α. Therefore, the expected number of
elements examined in an unsuccessful search is α.

Adding in the time to compute the hash function, the total time required is
�(1+ α).

Successful search:

• The expected time for a successful search is also �(1+ α).
• The circumstances are slightly different from an unsuccessful search.
• The probability that each list is searched is proportional to the number of ele-

ments it contains.

Theorem
A successful search takes expected time �(1+ α).

Proof Assume that the element x being searched for is equally likely to be any of
the n elements stored in the table.

The number of elements examined during a successful search for x is 1 more than
the number of elements that appear before x in x�s list. These are the elements
inserted after x was inserted (because we insert at the head of the list).

So we need to Þnd the average, over the n elements x in the table, of how many
elements were inserted into x�s list after x was inserted.

For i = 1, 2, . . . , n, let xi be the i th element inserted into the table, and let
ki = key[xi].

11-6 Lecture Notes for Chapter 11: Hash Tables

For all i and j , deÞne indicator random variable Xij = I {h(ki) = h(k j)}.
Simple uniform hashing ⇒ Pr{h(ki) = h(k j)} = 1/m ⇒ E [Xij] = 1/m (by
Lemma 5.1).

Expected number of elements examined in a successful search is

E

[
1

n

n∑
i=1

(
1+

n∑
j=i+1

Xij

)]

= 1

n

n∑
i=1

(
1+

n∑
j=i+1

E [Xij]

)
(linearity of expectation)

= 1

n

n∑
i=1

(
1+

n∑
j=i+1

1

m

)

= 1+ 1

nm

n∑
i=1

(n − i)

= 1+ 1

nm

(
n∑

i=1

n −
n∑

i=1

i

)

= 1+ 1

nm

(
n2 − n(n + 1)

2

)
(equation (A.1))

= 1+ n − 1

2m

= 1+ α

2
− α

2n
.

Adding in the time for computing the hash function, we get that the expected total
time for a successful search is �(2+ α/2− α/2n) = �(1+ α).

Alternative analysis, using indicator random variables even more:

For each slot l and for each pair of keys ki and k j , deÞne the indicator random
variable Xijl = I {the search is for xi , h(ki) = l , and h(k j) = l}. Xijl = 1 when
keys ki and k j collide at slot l and when we are searching for xi .

Simple uniform hashing ⇒ Pr{h(ki) = l} = 1/m and Pr {h(k j) = l} = 1/m.
Also have Pr {the search is for xi } = 1/n. These events are all independent ⇒
Pr {Xijl = 1} = 1/nm2 ⇒ E [Xijl] = 1/nm2 (by Lemma 5.1).

DeÞne, for each element xj , the indicator random variable

Y j = I {x j appears in a list prior to the element being searched for} .

Y j = 1 if and only if there is some slot l that has both elements xi and x j in its list,
and also i < j (so that xi appears after xj in the list). Therefore,

Y j =
j−1∑
i=1

m−1∑
l=0

Xijl .

One Þnal random variable: Z , which counts how many elements appear in the list
prior to the element being searched for: Z =∑n

j=1 Y j . We must count the element

Lecture Notes for Chapter 11: Hash Tables 11-7

being searched for as well as all those preceding it in its list ⇒ compute E[Z + 1]:

E [Z + 1] = E

[
1+

n∑
j=1

Y j

]

= 1+ E

[
n∑

j=1

j−1∑
i=1

m−1∑
l=0

Xijl

]
(linearity of expectation)

= 1+
n∑

j=1

j−1∑
i=1

m−1∑
l=0

E [Xijl] (linearity of expectation)

= 1+
n∑

j=1

j−1∑
i=1

m−1∑
l=0

1

nm2

= 1+
(

n

2

)
· m · 1

nm2

= 1+ n(n − 1)

2
· 1

nm

= 1+ n − 1

2m

= 1+ n

2m
− 1

2m

= 1+ α

2
− α

2n
.

Adding in the time for computing the hash function, we get that the expected total
time for a successful search is �(2+ α/2− α/2n) = �(1+ α).

Interpretation: If n = O(m), then α = n/m = O(m)/m = O(1), which means
that searching takes constant time on average.

Since insertion takes O(1) worst-case time and deletion takes O(1) worst-case
time when the lists are doubly linked, all dictionary operations take O(1) time on
average.

Hash functions

We discuss some issues regarding hash-function design and present schemes for
hash function creation.

What makes a good hash function?

• Ideally, the hash function satisÞes the assumption of simple uniform hashing.
• In practice, it�s not possible to satisfy this assumption, since we don�t know in

advance the probability distribution that keys are drawn from, and the keys may
not be drawn independently.

• Often use heuristics, based on the domain of the keys, to create a hash function
that performs well.

11-8 Lecture Notes for Chapter 11: Hash Tables

Keys as natural numbers

• Hash functions assume that the keys are natural numbers.
• When they�re not, have to interpret them as natural numbers.
• Example: Interpret a character string as an integer expressed in some radix

notation. Suppose the string is CLRS:

• ASCII values: C = 67, L = 76, R = 82, S = 83.
• There are 128 basic ASCII values.
• So interpret CLRS as (67 · 1283)+ (76 · 1282)+ (82 · 1281)+ (83 · 1280) =

141,764,947.

Division method

h(k) = k mod m .

Example: m = 20 and k = 91 ⇒ h(k) = 11.

Advantage: Fast, since requires just one division operation.

Disadvantage: Have to avoid certain values of m:

• Powers of 2 are bad. If m = 2p for integer p, then h(k) is just the least signiÞ-
cant p bits of k.

• If k is a character string interpreted in radix 2p (as in CLRS example), then
m = 2p − 1 is bad: permuting characters in a string does not change its hash
value (Exercise 11.3-3).

Good choice for m: A prime not too close to an exact power of 2.

Multiplication method

1. Choose constant A in the range 0 < A < 1.

2. Multiply key k by A.

3. Extract the fractional part of k A.

4. Multiply the fractional part by m.

5. Take the ßoor of the result.

Put another way, h(k) = 	m (k A mod 1)
, where k A mod 1 = k A − 	k A
 =
fractional part of k A.

Disadvantage: Slower than division method.

Advantage: Value of m is not critical.

(Relatively) easy implementation:

• Choose m = 2p for some integer p.
• Let the word size of the machine be w bits.
• Assume that k Þts into a single word. (k takes w bits.)
• Let s be an integer in the range 0 < s < 2w. (s takes w bits.)

Lecture Notes for Chapter 11: Hash Tables 11-9

• Restrict A to be of the form s/2w.

×

binary point

s = A · 2w

w bits

k

r0r1

h(k)

extract p bits

• Multiply k by s.
• Since we�re multiplying two w-bit words, the result is 2w bits, r12w+r0, where

r1 is the high-order word of the product and r0 is the low-order word.
• r1 holds the integer part of k A (k A
) and r0 holds the fractional part of k A

(k A mod 1 = k A − 	k A
). Think of the �binary point� (analog of decimal
point, but for binary representation) as being between r1 and r0. Since we don�t
care about the integer part of k A, we can forget about r1 and just use r0.

• Since we want 	m (k A mod 1)
, we could get that value by shifting r0 to the
left by p = lg m bits and then taking the p bits that were shifted to the left of
the binary point.

• We don�t need to shift. The p bits that would have been shifted to the left of the
binary point are the p most signiÞcant bits of r0. So we can just take these bits
after having formed r0 by multiplying k by s.

• Example: m = 8 (implies p = 3), w = 5, k = 21. Must have 0 < s < 25;
choose s = 13 ⇒ A = 13/32.

• Using just the formula to compute h(k): k A = 21 · 13/32 = 273/32 = 817
32

⇒ k A mod 1 = 17/32 ⇒ m (k A mod 1) = 8 · 17/32 = 17/4 = 41
4 ⇒	m (k A mod 1)
 = 4, so that h(k) = 4.

• Using the implementation: ks = 21 · 13 = 273 = 8 · 25 + 17 ⇒ r1 = 8,
r0 = 17. Written in w = 5 bits, r0 = 10001. Take the p = 3 most signiÞcant
bits of r0, get 100 in binary, or 4 in decimal, so that h(k) = 4.

How to choose A:

• The multiplication method works with any legal value of A.
• But it works better with some values than with others, depending on the keys

being hashed.
• Knuth suggests using A ≈ (

√
5− 1)/2.

Universal hashing

[We just touch on universal hashing in these notes. See the book for a full treat-
ment.]

Suppose that a malicious adversary, who gets to choose the keys to be hashed, has
seen your hashing program and knows the hash function in advance. Then he could
choose keys that all hash to the same slot, giving worst-case behavior.

11-10 Lecture Notes for Chapter 11: Hash Tables

One way to defeat the adversary is to use a different hash function each time. You
choose one at random at the beginning of your program. Unless the adversary
knows how you�ll be randomly choosing which hash function to use, he cannot
intentionally defeat you.

Just because we choose a hash function randomly, that doesn�t mean it�s a good
hash function. What we want is to randomly choose a single hash function from a
set of good candidates.

Consider a Þnite collection H of hash functions that map a universe U of keys into
the range {0, 1, . . . , m − 1}. H is universal if for each pair of keys k, l ∈ U , where
k �= l , the number of hash functions h ∈ H for which h(k) = h(l) is ≤|H | /m.

Put another way, H is universal if, with a hash function h chosen randomly
from H , the probability of a collision between two different keys is no more than
than 1/m chance of just choosing two slots randomly and independently.

Why are universal hash functions good?

• They give good hashing behavior:

Theorem
Using chaining and universal hashing on key k:

• If k is not in the table, the expected length E[nh(k)] of the list that k hashes
to is ≤ α.

• If k is in the table, the expected length E[nh(k)] of the list that holds k is
≤ 1+ α.

Corollary
Using chaining and universal hashing, the expected time for each SEARCH op-
eration is O(1).

• They are easy to design.

[See book for details of behavior and design of a universal class of hash functions.]

Open addressing

An alternative to chaining for handling collisions.

Idea:

• Store all keys in the hash table itself.
• Each slot contains either a key or NIL.
• To search for key k:

• Compute h(k) and examine slot h(k). Examining a slot is known as a probe.
• If slot h(k) contains key k, the search is successful. If this slot contains NIL,

the search is unsuccessful.
• There�s a third possibility: slot h(k) contains a key that is not k. We compute

the index of some other slot, based on k and on which probe (count from 0:
0th, 1st, 2nd, etc.) we�re on.

Lecture Notes for Chapter 11: Hash Tables 11-11

• Keep probing until we either Þnd key k (successful search) or we Þnd a slot
holding NIL (unsuccessful search).

• We need the sequence of slots probed to be a permutation of the slot numbers
〈0, 1, . . . , m − 1〉 (so that we examine all slots if we have to, and so that we
don�t examine any slot more than once).

• Thus, the hash function is h : U ×{0, 1, . . . , m − 1}︸ ︷︷ ︸
probe number

→ {0, 1, . . . , m − 1}︸ ︷︷ ︸
slot number

.

• The requirement that the sequence of slots be a permutation of 〈0, 1, . . . ,

m − 1〉 is equivalent to requiring that the probe sequence 〈h(k, 0), h(k, 1),

. . . , h(k, m − 1)〉 be a permutation of 〈0, 1, . . . , m − 1〉.
• To insert, act as though we�re searching, and insert at the Þrst NIL slot we Þnd.

Pseudocode for searching:

HASH-SEARCH(T, k)

i ← 0
repeat j ← h(k, i)

if T [j] = k
then return j

i ← i + 1
until T [j] = NIL or i = m
return NIL

HASH-SEARCH returns the index of a slot containing key k, or NIL if the search is
unsuccessful.

Pseudocode for insertion:

HASH-INSERT(T, k)

i ← 0
repeat j ← h(k, i)

if T [j] = NIL

then T [j] ← k
return j

else i ← i + 1
until i = m
error �hash table overßow�

HASH-INSERT returns the number of the slot that gets key k, or it ßags a �hash
table overßow� error if there is no empty slot in which to put key k.

Deletion: Cannot just put NIL into the slot containing the key we want to delete.

• Suppose we want to delete key k in slot j .
• And suppose that sometime after inserting key k, we were inserting key k′, and

during this insertion we had probed slot j (which contained key k).
• And suppose we then deleted key k by storing NIL into slot j .
• And then we search for key k′.

11-12 Lecture Notes for Chapter 11: Hash Tables

• During the search, we would probe slot j before probing the slot into which
key k′ was eventually stored.

• Thus, the search would be unsuccessful, even though key k′ is in the table.

Solution: Use a special value DELETED instead of NIL when marking a slot as
empty during deletion.

• Search should treat DELETED as though the slot holds a key that does not match
the one being searched for.

• Insertion should treat DELETED as though the slot were empty, so that it can be
reused.

The disadvantage of using DELETED is that now search time is no longer dependent
on the load factor α.

How to compute probe sequences

The ideal situation is uniform hashing: each key is equally likely to have any of
the m! permutations of 〈0, 1, . . . , m − 1〉 as its probe sequence. (This generalizes
simple uniform hashing for a hash function that produces a whole probe sequence
rather than just a single number.)

It�s hard to implement true uniform hashing, so we approximate it with techniques
that at least guarantee that the probe sequence is a permutation of 〈0,1, . . . ,m−1〉.
None of these techniques can produce all m! probe sequences. They will make use
of auxiliary hash functions, which map U → {0, 1, . . . , m − 1}.
Linear probing: Given auxiliary hash function h′, the probe sequence starts at
slot h′(k) and continues sequentially through the table, wrapping after slot m − 1
to slot 0.

Given key k and probe number i (0 ≤ i < m), h(k, i) = (h′(k)+ i) mod m.

The initial probe determines the entire sequence ⇒ only m possible sequences.

Linear probing suffers from primary clustering: long runs of occupied sequences
build up. And long runs tend to get longer, since an empty slot preceded by i full
slots gets Þlled next with probability (i + 1)/m. Result is that the average search
and insertion times increase.

Quadratic probing: As in linear probing, the probe sequence starts at h′(k). Un-
like linear probing, it jumps around in the table according to a quadratic function
of the probe number: h(k, i) = (h′(k)+ c1i + c2i2) mod m, where c1, c2 �= 0 are
constants.

Must constrain c1, c2, and m in order to ensure that we get a full permutation
of 〈0, 1, . . . , m − 1〉. (Problem 11-3 explores one way to implement quadratic
probing.)

Can get secondary clustering: if two distinct keys have the same h′ value, then
they have the same probe sequence.

Lecture Notes for Chapter 11: Hash Tables 11-13

Double hashing: Use two auxiliary hash functions, h1 and h2. h1 gives the initial
probe, and h2 gives the remaining probes: h(k, i) = (h1(k)+ ih2(k)) mod m.

Must have h2(k) be relatively prime to m (no factors in common other than 1) in
order to guarantee that the probe sequence is a full permutation of 〈0,1, . . . ,m−1〉.
• Could choose m to be a power of 2 and h2 to always produce an odd number

> 1.
• Could let m be prime and have 1 < h2(k) < m.

�(m2) different probe sequences, since each possible combination of h1(k)

and h2(k) gives a different probe sequence.

Analysis of open-address hashing

Assumptions:
• Analysis is in terms of load factor α. We will assume that the table never

completely Þlls, so we always have 0 ≤ n < m ⇒ 0 ≤ α < 1.
• Assume uniform hashing.
• No deletion.
• In a successful search, each key is equally likely to be searched for.

Theorem
The expected number of probes in an unsuccessful search is at most 1/(1− α).

Proof Since the search is unsuccessful, every probe is to an occupied slot, except
for the last probe, which is to an empty slot.

DeÞne random variable X = # of probes made in an unsuccessful search.

DeÞne events Ai , for i = 1, 2, . . ., to be the event that there is an i th probe and that
it�s to an occupied slot.

X ≥ i if and only if probes 1, 2, . . . , i − 1 are made and are to occupied slots ⇒
Pr {X ≥ i} = Pr {A1 ∩ A2 ∩ · · · ∩ Ai−1}.
By Exercise C.2-6,
Pr {A1 ∩ A2 ∩ · · · ∩ Ai−1} = Pr {A1} · Pr {A2 | A1} · Pr {A3 | A1 ∩ A2} · · ·

Pr {Ai−1 | A1 ∩ A2 ∩ · · · ∩ Ai−2} .

Claim
Pr {A j | A1 ∩ A2 ∩ · · · ∩ A j−1} = (n− j +1)/(m− j +1). Boundary case: j = 1
⇒ Pr {A1} = n/m.

Proof For the boundary case j = 1, there are n stored keys and m slots, so the
probability that the Þrst probe is to an occupied slot is n/m.

Given that j−1 probes were made, all to occupied slots, the assumption of uniform
hashing says that the probe sequence is a permutation of 〈0, 1, . . . , m − 1〉, which
in turn implies that the next probe is to a slot that we have not yet probed. There are
m − j + 1 slots remaining, n − j + 1 of which are occupied. Thus, the probability
that the j th probe is to an occupied slot is (n − j + 1)/(m − j + 1). (claim)

Using this claim,

11-14 Lecture Notes for Chapter 11: Hash Tables

Pr {X ≥ i} = n

m
· n − 1

m − 1
· n − 2

m − 2
· · · n − i + 2

m − i + 2︸ ︷︷ ︸
i − 1 factors

.

n < m ⇒ (n − j)/(m − j) ≤ n/m for j ≥ 0, which implies

Pr {X ≥ i} ≤
(n

m

)i−1

= αi−1 .

By equation (C.24),

E [X] =
∞∑

i=1

Pr {X ≥ i}

≤
∞∑

i=1

αi−1

=
∞∑

i=0

αi

= 1

1− α
(equation (A.6)) . (theorem)

Interpretation: If α is constant, an unsuccessful search takes O(1) time.

• If α = 0.5, then an unsuccessful search takes an average of 1/(1 − 0.5) = 2
probes.

• If α = 0.9, takes an average of 1/(1− 0.9) = 10 probes.

Corollary
The expected number of probes to insert is at most 1/(1− α).

Proof Since there is no deletion, insertion uses the same probe sequence as an
unsuccessful search.

Theorem

The expected number of probes in a successful search is at most
1

α
ln

1

1− α
.

Proof A successful search for key k follows the same probe sequence as when
key k was inserted.

By the previous corollary, if k was the (i + 1)st key inserted, then α equaled i/m
at the time. Thus, the expected number of probes made in a search for k is at most
1/(1− i/m) = m/(m − i).

That was assuming that k was the (i + 1)st key inserted. We need to average over
all n keys:

1

n

n−1∑
i=0

m

m − i
= m

n

n−1∑
i=0

1

m − i

= 1

α
(Hm − Hm−n) ,

Lecture Notes for Chapter 11: Hash Tables 11-15

where Hi =∑i
j=1 1/j is the i th harmonic number.

Simplify by using the technique of bounding a summation by an integral:

1

α
(Hm − Hm−n) = 1

α

m∑
k=m−n+1

1/k

≤ 1

α

∫ m

m−n
(1/x) dx (inequality (A.12))

= 1

α
ln

m

m − n

= 1

α
ln

1

1− α
(theorem)

Solutions for Chapter 11:
Hash Tables

Solution to Exercise 11.1-4

We denote the huge array by T and, taking the hint from the book, we also have a
stack implemented by an array S. The size of S equals the number of keys actually
stored, so that S should be allocated at the dictionary�s maximum size. The stack
has an attribute top[S], so that only entries S[1 . . top[S]] are valid.

The idea of this scheme is that entries of T and S validate each other. If key k is
actually stored in T , then T [k] contains the index, say j , of a valid entry in S, and
S[j] contains the value k. Let us call this situation, in which 1 ≤ T [k] ≤ top[S],
S[T [k]] = k, and T [S[j]] = j , a validating cycle.

Assuming that we also need to store pointers to objects in our direct-address table,
we can store them in an array that is parallel to either T or S. Since S is smaller
than T , we�ll use an array S′, allocated to be the same size as S, for these pointers.
Thus, if the dictionary contains an object x with key k, then there is a validating
cycle and S′[T [k]] points to x .

The operations on the dictionary work as follows:

• Initialization: Simply set top[S] = 0, so that there are no valid entries in the
stack.

• SEARCH: Given key k, we check whether we have a validating cycle, i.e.,
whether 1 ≤ T [k] ≤ top[S] and S[T [k]] = k. If so, we return S′[T [k]],
and otherwise we return NIL.

• INSERT: To insert object x with key k, assuming that this object is not already
in the dictionary, we increment top[S], set S[top[S]] ← k, set S′[top[S]] ← x ,
and set T [k] ← top[S].

• DELETE: To delete object x with key k, assuming that this object is in the
dictionary, we need to break the validating cycle. The trick is to also ensure
that we don�t leave a �hole� in the stack, and we solve this problem by moving
the top entry of the stack into the position that we are vacating�and then Þxing
up that entry�s validating cycle. That is, we execute the following sequence of
assignments:

Solutions for Chapter 11: Hash Tables 11-17

S[T [k]] ← S[top[S]]
S′[T [k]] ← S′[top[S]]
T [S[T [k]]] ← T [k]
T [k] ← 0
top[S] ← top[S]− 1

Each of these operations�initialization, SEARCH, INSERT, and DELETE�takes
O(1) time.

Solution to Exercise 11.2-1

For each pair of keys k, l , where k �= l , deÞne the indicator random variable
Xkl = I {h(k) = h(l)}. Since we assume simple uniform hashing, Pr{Xkl = 1} =
Pr {h(k) = h(l)} = 1/m, and so E [Xkl] = 1/m.

Now deÞne the random variable Y to be the total number of collisions, so that
Y =∑k �=l Xkl . The expected number of collisions is

E [Y] = E
[∑

k �=l

Xkl

]
=

∑
k �=l

E [Xkl] (linearity of expectation)

=
(

n

2

)
1

m

= n(n − 1)

2
· 1

m

= n(n − 1)

2m
.

Solution to Exercise 11.2-4

The ßag in each slot will indicate whether the slot is free.

• A free slot is in the free list, a doubly linked list of all free slots in the table.
The slot thus contains two pointers.

• A used slot contains an element and a pointer (possibly NIL) to the next element
that hashes to this slot. (Of course, that pointer points to another slot in the
table.)

Operations

• Insertion:

• If the element hashes to a free slot, just remove the slot from the free list and
store the element there (with a NIL pointer). The free list must be doubly
linked in order for this deletion to run in O(1) time.

11-18 Solutions for Chapter 11: Hash Tables

• If the element hashes to a used slot j , check whether the element x already
there �belongs� there (its key also hashes to slot j).
• If so, add the new element to the chain of elements in this slot. To do

so, allocate a free slot (e.g., take the head of the free list) for the new
element and put this new slot at the head of the list pointed to by the
hashed-to slot (j).

• If not, E is part of another slot�s chain. Move it to a new slot by allo-
cating one from the free list, copying the old slot�s (j �s) contents (ele-
ment x and pointer) to the new slot, and updating the pointer in the slot
that pointed to j to point to the new slot. Then insert the new element in
the now-empty slot as usual.
To update the pointer to j , it is necessary to Þnd it by searching the chain
of elements starting in the slot x hashes to.

• Deletion: Let j be the slot the element x to be deleted hashes to.

• If x is the only element in j (j doesn�t point to any other entries), just free
the slot, returning it to the head of the free list.

• If x is in j but there�s a pointer to a chain of other elements, move the Þrst
pointed-to entry to slot j and free the slot it was in.

• If x is found by following a pointer from j , just free x�s slot and splice it out
of the chain (i.e., update the slot that pointed to x to point to x�s successor).

• Searching: Check the slot the key hashes to, and if that is not the desired
element, follow the chain of pointers from the slot.

All the operations take expected O(1) times for the same reason they do with
the version in the book: The expected time to search the chains is O(1 + α)

regardless of where the chains are stored, and the fact that all the elements are
stored in the table means that α ≤ 1. If the free list were singly linked, then
operations that involved removing an arbitrary slot from the free list would not
run in O(1) time.

Solution to Exercise 11.3-3

First, we observe that we can generate any permutation by a sequence of inter-
changes of pairs of characters. One can prove this property formally, but infor-
mally, consider that both heapsort and quicksort work by interchanging pairs of
elements and that they have to be able to produce any permutation of their input
array. Thus, it sufÞces to show that if string x can be derived from string y by
interchanging a single pair of characters, then x and y hash to the same value.

Let us denote the i th character in x by xi , and similarly for y. The interpreta-
tion of x in radix 2p is

∑n−1
i=0 xi 2ip , and so h(x) = (∑n−1

i=0 xi 2ip
)

mod (2p − 1).

Similarly, h(y) = (∑n−1
i=0 yi2ip

)
mod (2p − 1).

Suppose that x and y are identical strings of n characters except that the characters
in positions a and b are interchanged: xa = yb and ya = xb. Without loss of
generality, let a > b. We have

Solutions for Chapter 11: Hash Tables 11-19

h(x)− h(y) =
(

n−1∑
i=0

xi 2
ip

)
mod (2p − 1)−

(
n−1∑
i=0

yi2
ip

)
mod (2p − 1) .

Since 0 ≤ h(x), h(y) < 2p − 1, we have that −(2p − 1) < h(x)− h(y) < 2p − 1.
If we show that (h(x)− h(y)) mod (2p − 1) = 0, then h(x) = h(y).

Since the sums in the hash functions are the same except for indices a and b, we
have

(h(x)− h(y)) mod (2p − 1)

= ((xa2ap + xb2bp)− (ya2ap + yb2bp)) mod (2p − 1)

= ((xa2ap + xb2bp)− (xb2ap + xa2bp)) mod (2p − 1)

= ((xa − xb)2
ap − (xa − xb)2

bp) mod (2p − 1)

= ((xa − xb)(2
ap − 2bp)) mod (2p − 1)

= ((xa − xb)2
bp(2(a−b)p − 1)) mod (2p − 1) .

By equation (A.5),

a−b−1∑
i=0

2pi = 2(a−b)p − 1

2p − 1
,

and multiplying both sides by 2p − 1, we get 2(a−b)p− 1 = (∑a−b−1
i=0 2pi

)
(2p − 1).

Thus,

(h(x)− h(y)) mod (2p − 1)

=
(

(xa − xb)2
bp

(
a−b−1∑

i=0

2pi

)
(2p − 1)

)
mod (2p − 1)

= 0 ,

since one of the factors is 2p − 1.

We have shown that (h(x)− h(y)) mod (2p − 1) = 0, and so h(x) = h(y).

Solution to Exercise 11.3-5

Let b = |B| and u = |U |. We start by showing that the total number of collisions
is minimized by a hash function that maps u/b elements of U to each of the b
values in B. For a given hash function, let uj be the number of elements that map
to j ∈ B. We have u =∑ j∈B u j . We also have that the number of collisions for a
given value of j ∈ B is

(u j
2

) = u j (u j − 1)/2.

Lemma
The total number of collisions is minimized when uj = u/b for each j ∈ B.

Proof If u j ≤ u/b, let us call j underloaded, and if uj ≥ u/b, let us call j
overloaded. Consider an unbalanced situation in which uj �= u/b for at least
one value j ∈ B. We can think of converting a balanced situation in which all
u j equal u/b into the unbalanced situation by repeatedly moving an element that
maps to an underloaded value to map instead to an overloaded value. (If you think

11-20 Solutions for Chapter 11: Hash Tables

of the values of B as representing buckets, we are repeatedly moving elements
from buckets containing at most u/b elements to buckets containing at least u/b
elements.)

We now show that each such move increases the number of collisions, so that
all the moves together must increase the number of collisions. Suppose that
we move an element from an underloaded value j to an overloaded value k,
and we leave all other elements alone. Because j is underloaded and k is
overloaded, u j ≤ u/b ≤ uk . Considering just the collisions for values j
and k, we have u j (u j − 1)/2 + uk(uk − 1)/2 collisions before the move and
(u j − 1)(u j − 2)/2 + (uk + 1)uk/2 collisions afterward. We wish to show that
u j (u j − 1)/2+ uk(uk − 1)/2 < (u j − 1)(u j − 2)/2+ (uk + 1)uk/2. We have the
following sequence of equivalent inequalities:

u j < uk + 1

2u j < 2uk + 2

−uk < uk − 2u j + 2

u2
j − u j + u2

k − uk < u2
j − 3u j + 2+ u2

k + uk

u j (u j − 1)+ uk(uk − 1) < (u j − 1)(u j − 2)+ (uk + 1)uk

u j (u j − 1)/2+ uk(uk − 1)/2 < (u j − 1)(u j − 2)/2+ (uk + 1)uk/2 .

Thus, each move increases the number of collisions. We conclude that the number
of collisions is minimized when uj = u/b for each j ∈ B.

By the above lemma, for any hash function, the total number of collisions must
be at least b(u/b)(u/b − 1)/2. The number of pairs of distinct elements is

(u
2

) =
u(u − 1)/2. Thus, the number of collisions per pair of distinct elements must be at
least
b(u/b)(u/b − 1)/2

u(u − 1)/2
= u/b − 1

u − 1

>
u/b − 1

u

= 1

b
− 1

u
.

Thus, the bound ε on the probability of a collision for any pair of distinct elements
can be no less than 1/b − 1/u = 1/|B| − 1/ |U |.

Solution to Problem 11-1

a. Since we assume uniform hashing, we can use the same observation as is used in
Corollary 11.7: that inserting a key entails an unsuccessful search followed by
placing the key into the Þrst empty slot found. As in the proof of Theorem 11.6,
if we let X be the random variable denoting the number of probes in an unsuc-
cessful search, then Pr{X ≥ i} ≤ αi−1. Since n ≤ m/2, we have α ≤ 1/2. Let-
ting i = k + 1, we have Pr {X > k} = Pr {X ≥ k + 1} ≤ (1/2)(k+1)−1 = 2−k .

Solutions for Chapter 11: Hash Tables 11-21

b. Substituting k = 2 lg n into the statement of part (a) yields that the probability
that the i th insertion requires more than k = 2 lg n probes is at most 2−2 lg n =
(2lg n)−2 = n−2 = 1/n2.

c. Let the event A be X > 2 lg n, and for i = 1, 2, . . . , n, let the event Ai be
Xi > 2 lg n. In part (b), we showed that Pr{Ai } ≤ 1/n2 for i = 1, 2, . . . , n.
From how we deÞned these events, A = A1 ∪ A2 ∪ · · · ∪ An . Using Boole�s
inequality, (C.18), we have

Pr {A} ≤ Pr {A1} + Pr {A2} + · · · + Pr {An}
≤ n · 1

n2

= 1/n .

d. We use the deÞnition of expectation and break the sum into two parts:

E [X] =
n∑

k=1

k · Pr {X = k}

=
�2 lg n�∑

k=1

k · Pr {X = k} +
n∑

k=�2 lg n�+1

k · Pr {X = k}

≤
�2 lg n�∑

k=1

�2 lg n� · Pr {X = k} +
n∑

k=�2 lg n�+1

n · Pr {X = k}

= �2 lg n�
�2 lg n�∑

k=1

Pr {X = k} + n
n∑

k=�2 lg n�+1

Pr {X = k} .

Since X takes on exactly one value, we have that
∑�2 lg n�

k=1 Pr {X = k} =
Pr {X ≤ �2 lg n�} ≤ 1 and

∑n
k=�2 lg n�+1 Pr {X = k} ≤ Pr {X > 2 lg n} ≤ 1/n,

by part (c). Therefore,

E [X] ≤ �2 lg n� · 1+ n · (1/n)

= �2 lg n� + 1

= O(lg n) .

Solution to Problem 11-2

a. A particular key is hashed to a particular slot with probability 1/n. Suppose we
select a speciÞc set of k keys. The probability that these k keys are inserted into
the slot in question and that all other keys are inserted elsewhere is(

1

n

)k (
1− 1

n

)n−k

.

Since there are
(n

k

)
ways to choose our k keys, we get

Qk =
(

1

n

)k (
1− 1

n

)n−k (n

k

)
.

11-22 Solutions for Chapter 11: Hash Tables

b. For i = 1, 2, . . . , n, let Xi be a random variable denoting the number of keys
that hash to slot i , and let Ai be the event that Xi = k, i.e., that exactly k keys
hash to slot i . From part (a), we have Pr{A} = Qk . Then,

Pk = Pr {M = k}
= Pr

{(
max
1≤i≤n

Xi

)
= k
}

= Pr {there exists i such that Xi = k and that Xi ≤ k for i = 1, 2, . . . , n}
≤ Pr {there exists i such that Xi = k}
= Pr {A1 ∪ A2 ∪ · · · ∪ An}
≤ Pr {A1} + Pr {A2} + · · · + Pr {An} (by inequality (C.18))

= nQk .

c. We start by showing two facts. First, 1 − 1/n < 1, which implies
(1− 1/n)n−k < 1. Second, n!/(n−k)! = n ·(n−1)·(n−2) · · · (n−k+1) < nk .
Using these facts, along with the simpliÞcation k! > (k/e)k of equation (3.17),
we have

Qk =
(

1

n

)k (
1− 1

n

)n−k n!

k!(n − k)!

<
n!

nkk!(n − k)!
((1− 1/n)n−k < 1)

<
1

k!
(n!/(n − k)! < nk)

<
ek

kk
(k! > (k/e)k) .

d. Notice that when n = 2, lg lg n = 0, so to be precise, we need to assume that
n ≥ 3.

In part (c), we showed that Qk < ek/kk for any k; in particular, this inequality
holds for k0. Thus, it sufÞces to show that ek0/k0

k0 < 1/n3 or, equivalently, that
n3 < k0

k0/ek0 .

Taking logarithms of both sides gives an equivalent condition:

3 lg n < k0(lg k0 − lg e)

= c lg n

lg lg n
(lg c + lg lg n − lg lg lg n − lg e) .

Dividing both sides by lg n gives the condition

3 <
c

lg lg n
(lg c + lg lg n − lg lg lg n − lg e)

= c

(
1+ lg c − lg e

lg lg n
− lg lg lg n

lg lg n

)
.

Let x be the last expression in parentheses:

x =
(

1+ lg c − lg e

lg lg n
− lg lg lg n

lg lg n

)
.

We need to show that there exists a constant c > 1 such that 3 < cx .

Noting that limn→∞ x = 1, we see that there exists n0 such that x ≥ 1/2 for all
n ≥ n0. Thus, any constant c > 6 works for n ≥ n0.

Solutions for Chapter 11: Hash Tables 11-23

We handle smaller values of n�in particular, 3 ≤ n < n0�as follows. Since
n is constrained to be an integer, there are a Þnite number of n in the range
3 ≤ n < n0. We can evaluate the expression x for each such value of n and
determine a value of c for which 3 < cx for all values of n. The Þnal value of c
that we use is the larger of

• 6, which works for all n ≥ n0, and
• max3≤n<n0 {c : 3 < cx}, i.e., the largest value of c that we chose for the range

3 ≤ n < n0.

Thus, we have shown that Qk0 < 1/n3, as desired.

To see that Pk < 1/n2 for k ≥ k0, we observe that by part (b), Pk ≤ nQk for
all k. Choosing k = k0 gives Pk0 ≤ nQk0 < n · (1/n3) = 1/n2. For k > k0, we
will show that we can pick the constant c such that Qk < 1/n3 for all k ≥ k0,
and thus conclude that Pk < 1/n2 for all k ≥ k0.

To pick c as required, we let c be large enough that k0 > 3 > e. Then e/k < 1
for all k ≥ k0, and so ek/kk decreases as k increases. Thus,

Qk < ek/kk

≤ ek0/kk0

< 1/n3

for k ≥ k0.

e. The expectation of M is

E [M] =
n∑

k=0

k · Pr {M = k}

=
k0∑

k=0

k · Pr {M = k} +
n∑

k=k0+1

k · Pr {M = k}

≤
k0∑

k=0

k0 · Pr {M = k} +
n∑

k=k0+1

n · Pr {M = k}

≤ k0

k0∑
k=0

Pr {M = k} + n
n∑

k=k0+1

Pr {M = k}

= k0 · Pr {M ≤ k0} + n · Pr {M > k0} ,

which is what we needed to show, since k0 = c lg n/ lg lg n.

To show that E [M] = O(lg n/ lg lg n), note that Pr{M ≤ k0} ≤ 1 and

Pr {M > k0} =
n∑

k=k0+1

Pr {M = k}

=
n∑

k=k0+1

Pk

<

n∑
k=k0+1

1/n2 (by part (d))

< n · (1/n2)

= 1/n .

11-24 Solutions for Chapter 11: Hash Tables

We conclude that

E [M] ≤ k0 · 1+ n · (1/n)

= k0 + 1

= O(lg n/ lg lg n) .

Solution to Problem 11-3

a. From how the probe-sequence computation is speciÞed, it is easy to see that
the probe sequence is 〈h(k), h(k) + 1, h(k) + 1 + 2, h(k) + 1 + 2 + 3, . . . ,

h(k)+ 1+ 2+ 3+ · · · + i , . . .〉, where all the arithmetic is modulo m. Starting
the probe numbers from 0, the i th probe is offset (modulo m) from h(k) by

i∑
j=0

j = i(i + 1)

2
= 1

2
i2 + 1

2
i .

Thus, we can write the probe sequence as

h ′(k, i) =
(

h(k)+ 1

2
i + 1

2
i2

)
mod m ,

which demonstrates that this scheme is a special case of quadratic probing.

b. Let h ′(k, i) denote the i th probe of our scheme. We saw in part (a) that
h ′(k, i) = (h(k) + i(i + 1)/2) mod m. To show that our algorithm examines
every table position in the worst case, we show that for a given key, each of
the Þrst m probes hashes to a distinct value. That is, for any key k and for any
probe numbers i and j such that 0 ≤ i < j < m, we have h′(k, i) �= h′(k, j).
We do so by showing that h′(k, i) = h′(k, j) yields a contradiction.

Let us assume that there exists a key k and probe numbers i and j satsifying
0 ≤ i < j < m for which h′(k, i) = h′(k, j). Then

h(k)+ i(i + 1)/2 ≡ h(k)+ j (j + 1)/2 (mod m) ,

which in turn implies that

i(i + 1)/2 ≡ j (j + 1)/2 (mod m) ,

or

j (j + 1)/2− i(i + 1)/2 ≡ 0 (mod m) .

Since j (j + 1)/2− i(i + 1)/2 = (j − i)(j + i + 1)/2, we have

(j − i)(j + i + 1)/2 ≡ 0 (mod m) .

The factors j−i and j+i+1 must have different parities, i.e., j−i is even if and
only if j+i+1 is odd. (Work out the various cases in which i and j are even and
odd.) Since (j−i)(j+i+1)/2 ≡ 0 (mod m), we have (j−i)(j+i+1)/2 = rm
for some integer r or, equivalently, (j − i)(j + i + 1) = r · 2m. Using the
assumption that m is a power of 2, let m = 2p for some nonnegative integer p,
so that now we have (j − i)(j + i + 1) = r · 2p+1. Because exactly one of

Solutions for Chapter 11: Hash Tables 11-25

the factors j − i and j + i + 1 is even, 2p+1 must divide one of the factors. It
cannot be j − i , since j − i < m < 2p+1. But it also cannot be j + i + 1, since
j + i + 1 ≤ (m − 1)+ (m − 2)+ 1 = 2m − 2 < 2p+1. Thus we have derived
the contradiction that 2p+1 divides neither of the factors j − i and j + i + 1.
We conclude that h′(k, i) �= h′(k, j).

Lecture Notes for Chapter 12:
Binary Search Trees

Chapter 12 overview

Search trees

• Data structures that support many dynamic-set operations.
• Can be used as both a dictionary and as a priority queue.
• Basic operations take time proportional to the height of the tree.

• For complete binary tree with n nodes: worst case �(lg n).
• For linear chain of n nodes: worst case �(n).

• Different types of search trees include binary search trees, red-black trees (cov-
ered in Chapter 13), and B-trees (covered in Chapter 18).

We will cover binary search trees, tree walks, and operations on binary search trees.

Binary search trees

Binary search trees are an important data structure for dynamic sets.

• Accomplish many dynamic-set operations in O(h) time, where h = height of
tree.

• As in Section 10.4, we represent a binary tree by a linked data structure in which
each node is an object.

• root[T] points to the root of tree T .
• Each node contains the Þelds

• key (and possibly other satellite data).
• left: points to left child.
• right: points to right child.
• p: points to parent. p[root[T]] = NIL.

• Stored keys must satisfy the binary-search-tree property.

• If y is in left subtree of x , then key[y] ≤ key[x].

12-2 Lecture Notes for Chapter 12: Binary Search Trees

• If y is in right subtree of x , then key[y] ≥ key[x].

Draw sample tree.

[This is Figure 12.1(a) from the text, using A, B, D, F , H , K in place of 2, 3, 5,
5, 7, 8, with alphabetic comparisons. It�s OK to have duplicate keys, though there
are none in this example. Show that the binary-search-tree property holds.]

A D

B

K

H

F

The binary-search-tree property allows us to print keys in a binary search tree in
order, recursively, using an algorithm called an inorder tree walk. Elements are
printed in monotonically increasing order.

How INORDER-TREE-WALK works:
• Check to make sure that x is not NIL.
• Recursively, print the keys of the nodes in x�s left subtree.
• Print x�s key.
• Recursively, print the keys of the nodes in x�s right subtree.

INORDER-TREE-WALK(x)

if x �= NIL

then INORDER-TREE-WALK(left[x])
print key[x]
INORDER-TREE-WALK(right[x])

Example: Do the inorder tree walk on the example above, getting the output
AB DF H K .

Correctness: Follows by induction directly from the binary-search-tree property.

Time: Intuitively, the walk takes �(n) time for a tree with n nodes, because we
visit and print each node once. [Book has formal proof.]

Querying a binary search tree

Searching

TREE-SEARCH(x, k)

if x = NIL or k = key[x]
then return x

if k < key[x]
then return TREE-SEARCH(left[x], k)

else return TREE-SEARCH(right[x], k)

Initial call is TREE-SEARCH(root[T], k).

Lecture Notes for Chapter 12: Binary Search Trees 12-3

Example: Search for values D and C in the example tree from above.

Time: The algorithm recurses, visiting nodes on a downward path from the root.
Thus, running time is O(h), where h is the height of the tree.

[The text also gives an iterative version of TREE-SEARCH, which is more efÞ-
cient on most computers. The above recursive procedure is more straightforward,
however.]

Minimum and maximum

The binary-search-tree property guarantees that

• the minimum key of a binary search tree is located at the leftmost node, and
• the maximum key of a binary search tree is located at the rightmost node.

Traverse the appropriate pointers (left or right) until NIL is reached.

TREE-MINIMUM(x)

while left[x] �= NIL

do x ← left[x]
return x

TREE-MAXIMUM(x)

while right[x] �= NIL

do x ← right[x]
return x

Time: Both procedures visit nodes that form a downward path from the root to a
leaf. Both procedures run in O(h) time, where h is the height of the tree.

Successor and predecessor

Assuming that all keys are distinct, the successor of a node x is the node y such
that key[y] is the smallest key > key[x]. (We can Þnd x�s successor based entirely
on the tree structure. No key comparisons are necessary.) If x has the largest key
in the binary search tree, then we say that x�s successor is NIL.

There are two cases:

1. If node x has a non-empty right subtree, then x�s successor is the minimum in
x�s right subtree.

2. If node x has an empty right subtree, notice that:

• As long as we move to the left up the tree (move up through right children),
we�re visiting smaller keys.

• x�s successor y is the node that x is the predecessor of (x is the maximum in
y�s left subtree).

12-4 Lecture Notes for Chapter 12: Binary Search Trees

TREE-SUCCESSOR(x)

if right[x] �= NIL

then return TREE-MINIMUM(right[x])
y ← p[x]
while y �= NIL and x = right[y]

do x ← y
y ← p[y]

return y

TREE-PREDECESSOR is symmetric to TREE-SUCCESSOR.

Example:

2 4

3

13

7

6

17 20

18

15

9

• Find the successor of the node with key value 15. (Answer: Key value 17)
• Find the successor of the node with key value 6. (Answer: Key value 7)
• Find the successor of the node with key value 4. (Answer: Key value 6)
• Find the predecessor of the node with key value 6. (Answer: Key value 4)

Time: For both the TREE-SUCCESSOR and TREE-PREDECESSOR procedures, in
both cases, we visit nodes on a path down the tree or up the tree. Thus, running
time is O(h), where h is the height of the tree.

Insertion and deletion

Insertion and deletion allows the dynamic set represented by a binary search tree
to change. The binary-search-tree property must hold after the change. Insertion is
more straightforward than deletion.

Lecture Notes for Chapter 12: Binary Search Trees 12-5

Insertion

TREE-INSERT(T, z)

y ← NIL

x ← root[T]
while x �= NIL

do y ← x
if key[z] < key[x]
then x ← left[x]
else x ← right[x]

p[z] ← y
if y = NIL

then root[T] ← z � Tree T was empty
else if key[z] < key[y]

then left[y] ← z
else right[y] ← z

• To insert value v into the binary search tree, the procedure is given node z, with
key[z] = v, left[z] = NIL, and right[z] = NIL.

• Beginning at root of the tree, trace a downward path, maintaining two pointers.

• Pointer x : traces the downward path.
• Pointer y: �trailing pointer� to keep track of parent of x .

• Traverse the tree downward by comparing the value of node at x with v, and
move to the left or right child accordingly.

• When x is NIL, it is at the correct position for node z.
• Compare z�s value with y�s value, and insert z at either y�s left or right, appro-

priately.

Example: Run TREE-INSERT(C) on the Þrst sample binary search tree. Result:

A D

B

K

H

F

C

Time: Same as TREE-SEARCH. On a tree of height h, procedure takes O(h) time.

TREE-INSERT can be used with INORDER-TREE-WALK to sort a given set of num-
bers. (See Exercise 12.3-3.)

12-6 Lecture Notes for Chapter 12: Binary Search Trees

Deletion

TREE-DELETE is broken into three cases.

Case 1: z has no children.

• Delete z by making the parent of z point to NIL, instead of to z.

Case 2: z has one child.

• Delete z by making the parent of z point to z�s child, instead of to z.

Case 3: z has two children.

• z�s successor y has either no children or one child. (y is the minimum
node�with no left child�in z�s right subtree.)

• Delete y from the tree (via Case 1 or 2).
• Replace z�s key and satellite data with y�s.

TREE-DELETE(T, z)

� Determine which node y to splice out: either z or z�s successor.
if left[z] = NIL or right[z] = NIL

then y ← z
else y ← TREE-SUCCESSOR(z)

� x is set to a non-NIL child of y, or to NIL if y has no children.
if left[y] �= NIL

then x ← left[y]
else x ← right[y]

� y is removed from the tree by manipulating pointers of p[y] and x .
if x �= NIL

then p[x] ← p[y]
if p[y] = NIL

then root[T] ← x
else if y = left[p[y]]

then left[p[y]] ← x
else right[p[y]] ← x

� If it was z�s successor that was spliced out, copy its data into z.
if y �= z
then key[z] ← key[y]

copy y�s satellite data into z
return y

Example: We can demonstrate on the above sample tree.

• For Case 1, delete K .
• For Case 2, delete H .
• For Case 3, delete B, swapping it with C .

Time: O(h), on a tree of height h.

Lecture Notes for Chapter 12: Binary Search Trees 12-7

Minimizing running time

We�ve been analyzing running time in terms of h (the height of the binary search
tree), instead of n (the number of nodes in the tree).
• Problem: Worst case for binary search tree is �(n)�no better than linked list.
• Solution: Guarantee small height (balanced tree)�h = O(lg n).

In later chapters, by varying the properties of binary search trees, we will be able
to analyze running time in terms of n.
• Method: Restructure the tree if necessary. Nothing special is required for

querying, but there may be extra work when changing the structure of the tree
(inserting or deleting).

Red-black trees are a special class of binary trees that avoids the worst-case behav-
ior of O(n) like �plain� binary search trees. Red-black trees are covered in detail
in Chapter 13.

Expected height of a randomly built binary search tree

[These are notes on a starred section in the book. I covered this material in an
optional lecture.]
Given a set of n distinct keys. Insert them in random order into an initially empty
binary search tree.
• Each of the n! permutations is equally likely.
• Different from assuming that every binary search tree on n keys is equally

likely.

Try it for n = 3. Will get 5 different binary search trees. When we look at the
binary search trees resulting from each of the 3! input permutations, 4 trees will
appear once and 1 tree will appear twice. [This gives the idea for the solution
to Exercise 12.4-3.]

• Forget about deleting keys.

We will show that the expected height of a randomly built binary search tree is
O(lg n).

Random variables

DeÞne the following random variables:
• Xn = height of a randomly built binary search tree on n keys.
• Yn = 2Xn = exponential height.
• Rn = rank of the root within the set of n keys used to build the binary search

tree.
• Equally likely to be any element of {1, 2, . . . , n}.
• If Rn = i , then

• Left subtree is a randomly-built binary search tree on i − 1 keys.
• Right subtree is a randomly-built binary search tree on n − i keys.

12-8 Lecture Notes for Chapter 12: Binary Search Trees

Foreshadowing

We will need to relate E[Yn] to E [Xn].

We�ll use Jensen�s inequality:

E [f (X)] ≥ f (E [X]) , [leave on board]

provided

• the expectations exist and are Þnite, and
• f (x) is convex: for all x, y and all 0 ≤ λ ≤ 1

f (λx + (1− λ)y) ≤ λ f (x)+ (1− λ) f (y) .

x yλx + (1�λ)y

f(x)

f(y)

f(λx + (1�λ)y)

λf(x) + (1�λ)f(y)

Convex ≡ �curves upward�

We�ll use Jensen�s inequality for f (x) = 2x .

Since 2x curves upward, it�s convex.

Formula for Yn

Think about Yn, if we know that Rn = i :

i�1
nodes n�i

nodes

Height of root is 1 more than the maximum height of its children:

Lecture Notes for Chapter 12: Binary Search Trees 12-9

Yn = 2 ·max(Yi−1, Yn−i) .

Base cases:

• Y1 = 1 (expected height of a 1-node tree is 20 = 1).
• DeÞne Y0 = 0.

DeÞne indicator random variables Zn,1, Zn,2, . . . , Zn,n :

Zn,i = I {Rn = i} .

Rn is equally likely to be any element of {1, 2, . . . , n}
⇒ Pr {Rn = i} = 1/n
⇒ E [Zn,i] = 1/n [leave on board]

(since E [I {A}] = Pr {A})
Consider a given n-node binary search tree (which could be a subtree). Exactly
one Zn,i is 1, and all others are 0. Hence,

Yn =
n∑

i=1

Zn,i · (2 ·max(Yi−1, Yn−i)) . [leave on board]

[Recall: Yn = 2 ·max(Yi−1, Yn−i) was assuming that Rn = i .]

Bounding E [Yn]

We will show that E [Yn] is polynomial in n, which will imply that E[Xn] =
O(lg n).

Claim
Zn,i is independent of Yi−1 and Yn−i .

JustiÞcation If we choose the root such that Rn = i , the left subtree contains i −1
nodes, and it�s like any other randomly built binary search tree with i − 1 nodes.
Other than the number of nodes, the left subtree�s structure has nothing to do with
it being the left subtree of the root. Hence, Yi−1 and Zn,i are independent.

Similarly, Yn−i and Zn,i are independent. (claim)

Fact
If X and Y are nonnegative random variables, then E[max(X, Y)] ≤ E [X]+E [Y].
[Leave on board. This is Exercise C.3-4 from the text.]

Thus,

E [Yn] = E

[
n∑

i=1

Zn,i (2 ·max(Yi−1, Yn−i))

]

=
n∑

i=1

E [Zn,i · (2 ·max(Yi−1, Yn−i))] (linearity of expectation)

=
n∑

i=1

E [Zn,i] · E [2 ·max(Yi−1, Yn−i)] (independence)

12-10 Lecture Notes for Chapter 12: Binary Search Trees

=
n∑

i=1

1

n
· E [2 ·max(Yi−1, Yn−i)] (E [Zn,i] = 1/n)

= 2

n

n∑
i=1

E [max(Yi−1, Yn−i)] (E [aX] = a E [X])

≤ 2

n

n∑
i=1

(E [Yi−1]+ E [Yn−i]) (earlier fact) .

Observe that the last summation is
(E [Y0]+ E [Yn−1])+ (E [Y1]+ E [Yn−2])+ (E [Y2]+ E [Yn−3])

+ · · · + (E [Yn−1]+ E [Y0]) = 2
n−1∑
i=0

E [Yi] ,

and so we get the recurrence

E [Yn] ≤ 4

n

n−1∑
i=0

E [Yi] . [leave on board]

Solving the recurrence

We will show that for all integers n > 0, this recurrence has the solution

E [Yn] ≤ 1

4

(
n + 3

3

)
.

Lemma
n−1∑
i=0

(
i + 3

3

)
=
(

n + 3

4

)
.

[This lemma solves Exercise 12.4-1.]

Proof Use Pascal�s identity (Exercise C.1-7):

(
n

k

)
=
(

n − 1

k − 1

)
+
(

n − 1

k

)
.

Also using the simple identity

(
4

4

)
= 1 =

(
3

3

)
, we have(

n + 3

4

)
=

(
n + 2

3

)
+
(

n + 2

4

)
=

(
n + 2

3

)
+
(

n + 1

3

)
+
(

n + 1

4

)
=

(
n + 2

3

)
+
(

n + 1

3

)
+
(

n

3

)
+
(

n

4

)
...

=
(

n + 2

3

)
+
(

n + 1

3

)
+
(

n

3

)
+ · · · +

(
4

3

)
+
(

4

4

)
=

(
n + 2

3

)
+
(

n + 1

3

)
+
(

n

3

)
+ · · · +

(
4

3

)
+
(

3

3

)
=

n−1∑
i=0

(
i + 3

3

)
. (lemma)

Lecture Notes for Chapter 12: Binary Search Trees 12-11

We solve the recurrence by induction on n.

Basis: n = 1.

1 = Y1 = E [Y1] ≤ 1

4

(
1+ 3

3

)
= 1

4
· 4 = 1 .

Inductive step: Assume that E [Yi] ≤ 1

4

(
i + 3

3

)
for all i < n. Then

E [Yn] ≤ 4

n

n−1∑
i=0

E [Yi] (from before)

≤ 4

n

n−1∑
i=0

1

4

(
i + 3

3

)
(inductive hypothesis)

= 1

n

n−1∑
i=0

(
i + 3

3

)
= 1

n

(
n + 3

4

)
(lemma)

= 1

n
· (n + 3)!

4! (n − 1)!

= 1

4
· (n + 3)!

3! n!

= 1

4

(
n + 3

3

)
.

Thus, we�ve proven that E[Yn] ≤ 1

4

(
n + 3

3

)
.

Bounding E [Xn]

With our bound on E[Yn], we use Jensen�s inequality to bound E[Xn]:

2E[Xn] ≤ E [2Xn] = E [Yn] .

Thus,

2E[Xn] ≤ 1

4

(
n + 3

3

)
= 1

4
· (n + 3)(n + 2)(n + 1)

6
= O(n3) .

Taking logs of both sides gives E[Xn] = O(lg n).

Done!

Solutions for Chapter 12:
Binary Search Trees

Solution to Exercise 12.1-2

In a heap, a node�s key is ≥ both of its children�s keys. In a binary search tree, a
node�s key is ≥ its left child�s key, but ≤ its right child�s key.

The heap property, unlike the binary-searth-tree property, doesn�t help print the
nodes in sorted order because it doesn�t tell which subtree of a node contains the
element to print before that node. In a heap, the largest element smaller than the
node could be in either subtree.

Note that if the heap property could be used to print the keys in sorted order in
O(n) time, we would have an O(n)-time algorithm for sorting, because building
the heap takes only O(n) time. But we know (Chapter 8) that a comparison sort
must take �(n lg n) time.

Solution to Exercise 12.2-5

Let x be a node with two children. In an inorder tree walk, the nodes in x�s left
subtree immediately precede x and the nodes in x�s right subtree immediately fol-
low x . Thus, x�s predecessor is in its left subtree, and its successor is in its right
subtree.

Let s be x�s successor. Then s cannot have a left child, for a left child of s would
come between x and s in the inorder walk. (It�s after x because it�s in x�s right
subtree, and it�s before s because it�s in s�s left subtree.) If any node were to come
between x and s in an inorder walk, then s would not be x�s successor, as we had
supposed.

Symmetrically, x�s predecessor has no right child.

Solution to Exercise 12.2-7

Note that a call to TREE-MINIMUM followed by n− 1 calls to TREE-SUCCESSOR

performs exactly the same inorder walk of the tree as does the procedure INORDER-
TREE-WALK. INORDER-TREE-WALK prints the TREE-MINIMUM Þrst, and by

Solutions for Chapter 12: Binary Search Trees 12-13

deÞnition, the TREE-SUCCESSOR of a node is the next node in the sorted order
determined by an inorder tree walk.

This algorithm runs in �(n) time because:

• It requires �(n) time to do the n procedure calls.
• It traverses each of the n − 1 tree edges at most twice, which takes O(n) time.

To see that each edge is traversed at most twice (once going down the tree and once
going up), consider the edge between any node u and either of its children, node v.
By starting at the root, we must traverse (u, v) downward from u to v, before
traversing it upward from v to u. The only time the tree is traversed downward is
in code of TREE-MINIMUM, and the only time the tree is traversed upward is in
code of TREE-SUCCESSOR when we look for the successor of a node that has no
right subtree.

Suppose that v is u�s left child.

• Before printing u, we must print all the nodes in its left subtree, which is rooted
at v, guaranteeing the downward traversal of edge (u, v).

• After all nodes in u�s left subtree are printed, u must be printed next. Procedure
TREE-SUCCESSOR traverses an upward path to u from the maximum element
(which has no right subtree) in the subtree rooted at v. This path clearly includes
edge (u, v), and since all nodes in u�s left subtree are printed, edge (u, v) is
never traversed again.

Now suppose that v is u�s right child.

• After u is printed, TREE-SUCCESSOR(u) is called. To get to the minimum
element in u�s right subtree (whose root is v), the edge (u, v) must be traversed
downward.

• After all values in u�s right subtree are printed, TREE-SUCCESSOR is called on
the maximum element (again, which has no right subtree) in the subtree rooted
at v. TREE-SUCCESSOR traverses a path up the tree to an element after u,
since u was already printed. Edge (u, v) must be traversed upward on this path,
and since all nodes in u�s right subtree have been printed, edge (u, v) is never
traversed again.

Hence, no edge is traversed twice in the same direction.

Therefore, this algorithm runs in �(n) time.

Solution to Exercise 12.3-3

Here�s the algorithm:

TREE-SORT(A)

let T be an empty binary search tree
for i ← 1 to n

do TREE-INSERT(T, A[i])
INORDER-TREE-WALK(root[T])

12-14 Solutions for Chapter 12: Binary Search Trees

Worst case: �(n2)�occurs when a linear chain of nodes results from the repeated
TREE-INSERT operations.

Best case: �(n lg n)�occurs when a binary tree of height �(lg n) results from the
repeated TREE-INSERT operations.

Solution to Exercise 12.4-1

We will answer the second part Þrst. We shall show that if the average depth of a
node is �(lg n), then the height of the tree is O(

√
n lg n). Then we will answer the

Þrst part by exhibiting that this bound is tight: there is a binary search tree with
average node depth �(lg n) and height �(

√
n lg n) = ω(lg n).

Lemma
If the average depth of a node in an n-node binary search tree is �(lg n), then the
height of the tree is O(

√
n lg n).

Proof Suppose that an n-node binary search tree has average depth �(lg n) and
height h. Then there exists a path from the root to a node at depth h, and the depths
of the nodes on this path are 0, 1, . . . , h. Let P be the set of nodes on this path and
Q be all other nodes. Then the average depth of a node is

1

n

(∑
x∈P

depth(x)+
∑
y∈Q

depth(y)

)
≥ 1

n

∑
x∈P

depth(x)

= 1

n

h∑
d=0

d

= 1

n
·�(h2) .

For the purpose of contradiction, suppose that h is not O(
√

n lg n), so that h =
ω(
√

n lg n). Then we have
1

n
·�(h2) = 1

n
· ω(n lg n)

= ω(lg n) ,

which contradicts the assumption that the average depth is �(lg n). Thus, the
height is O(

√
n lg n).

Here is an example of an n-node binary search tree with average node depth �(lg n)

but height ω(lg n):

n −√n lg n
nodes

√
n lg n nodes

Solutions for Chapter 12: Binary Search Trees 12-15

In this tree, n −√n lg n nodes are a complete binary tree, and the other
√

n lg n
nodes protrude from below as a single chain. This tree has height

�(lg(n −√n lg n))+√n lg n = �(
√

n lg n)

= ω(lg n) .

To compute an upper bound on the average depth of a node, we use O(lg n) as
an upper bound on the depth of each of the n −√n lg n nodes in the complete
binary tree part and O(lg n +√n lg n) as an upper bound on the depth of each of
the
√

n lg n nodes in the protruding chain. Thus, the average depth of a node is
bounded from above by
1

n
· O(

√
n lg n (lg n +√n lg n)+ (n −√n lg n) lg n) = 1

n
· O(n lg n)

= O(lg n) .

To bound the average depth of a node from below, observe that the bottommost
level of the complete binary tree part has �(n −√n lg n) nodes, and each of these
nodes has depth �(lg n). Thus, the average node depth is at least
1

n
·�((n −√n lg n) lg n) = 1

n
·�(n lg n)

= �(lg n) .

Because the average node depth is both O(lg n) and �(lg n), it is �(lg n).

Solution to Exercise 12.4-4

We�ll go one better than showing that the function 2x is convex. Instead, we�ll
show that the function cx is convex, for any positive constant c. According to the
deÞnition of convexity on page 1109 of the text, a function f (x) is convex if for all
x and y and for all 0 ≤ λ ≤ 1, we have f (λx + (1− λ)y) ≤ λ f (x)+ (1− λ) f (y).
Thus, we need to show that for all 0 ≤ λ ≤ 1, we have cλx+(1−λ)y ≤ λcx+(1−λ)cy .

We start by proving the following lemma.

Lemma
For any real numbers a and b and any positive real number c,

ca ≥ cb + (a − b)cb ln c .

Proof We Þrst show that for all real r , we have cr ≥ 1+ r ln c. By equation (3.11)
from the text, we have ex ≥ 1+x for all real x . Let x = r ln c, so that ex = er ln c =
(eln c)r = cr . Then we have cr = er ln c ≥ 1+ r ln c.

Substituting a − b for r in the above inequality, we have ca−b ≥ 1 + (a − b) ln c.
Multiplying both sides by cb gives ca ≥ cb + (a − b)cb ln c. (lemma)

Now we can show that cλx+(1−λ)y ≤ λcx + (1 − λ)cy for all 0 ≤ λ ≤ 1. For
convenience, let z = λx + (1− λ)y.

In the inequality given by the lemma, substitute x for a and z for b, giving

cx ≥ cz + (x − z)cz ln c .

12-16 Solutions for Chapter 12: Binary Search Trees

Also substitute y for a and z for b, giving

cy ≥ cz + (y − z)cz ln c .

If we multiply the Þrst inequality by λ and the second by 1 − λ and then add the
resulting inequalities, we get

λcx + (1− λ)cy

≥ λ(cz + (x − z)cz ln c)+ (1− λ)(cz + (y − z)cz ln c)

= λcz + λxcz ln c − λzcz ln c + (1− λ)cz + (1− λ)ycz ln c − (1− λ)zcz ln c

= (λ+ (1− λ))cz + (λx + (1− λ)y)cz ln c − (λ+ (1− λ))zcz ln c

= cz + zcz ln c − zcz ln c

= cz

= cλx+(1−λ)y ,

as we wished to show.

Solution to Problem 12-2

To sort the strings of S, we Þrst insert them into a radix tree, and then use a preorder
tree walk to extract them in lexicographically sorted order. The tree walk outputs
strings only for nodes that indicate the existence of a string (i.e., those that are
lightly shaded in Figure 12.5 of the text).

Correctness: The preorder ordering is the correct order because:

• Any node�s string is a preÞx of all its descendants� strings and hence belongs
before them in the sorted order (rule 2).

• A node�s left descendants belong before its right descendants because the corre-
sponding strings are identical up to that parent node, and in the next position the
left subtree�s strings have 0 whereas the right subtree�s strings have 1 (rule 1).

Time: �(n).

• Insertion takes �(n) time, since the insertion of each string takes time propor-
tional to its length (traversing a path through the tree whose length is the length
of the string), and the sum of all the string lengths is n.

• The preorder tree walk takes O(n) time. It is just like INORDER-TREE-WALK

(it prints the current node and calls itself recursively on the left and right sub-
trees), so it takes time proportional to the number of nodes in the tree. The
number of nodes is at most 1 plus the sum (n) of the lengths of the binary
strings in the tree, because a length-i string corresponds to a path through the
root and i other nodes, but a single node may be shared among many string
paths.

Solutions for Chapter 12: Binary Search Trees 12-17

Solution to Problem 12-3

a. The total path length P(T) is deÞned as
∑

x∈T d(x, T). Dividing both quanti-
ties by n gives the desired equation.

b. For any node x in TL , we have d(x, TL) = d(x, T) − 1, since the distance to
the root of TL is one less than the distance to the root of T . Similarly, for any
node x in TR , we have d(x, TR) = d(x, T) − 1. Thus, if T has n nodes, we
have

P(T) = P(TL)+ P(TR)+ n − 1 ,

since each of the n nodes of T (except the root) is in either TL or TR .

c. If T is a randomly built binary search tree, then the root is equally likely to be
any of the n elements in the tree, since the root is the Þrst element inserted.
It follows that the number of nodes in subtree TL is equally likely to be any
integer in the set {0, 1, . . . , n − 1}. The deÞnition of P(n) as the average total
path length of a randomly built binary search tree, along with part (b), gives us
the recurrence

P(n) = 1

n

n−1∑
i=0

(P(i)+ P(n − i − 1)+ n − 1) .

d. Since P(0) = 0, and since for k = 1, 2, . . . , n − 1, each term P(k) in the
summation appears once as P(i) and once as P(n − i − 1), we can rewrite the
equation from part (c) as

P(n) = 2

n

n−1∑
k=1

P(k)+�(n) .

e. Observe that if, in the recurrence (7.6) in part (c) of Problem 7-2, we replace
E [T (·)] by P(·) and we replace q by k, we get almost the same recurrence as in
part (d) of Problem 12-3. The remaining difference is that in Problem 12-3(d),
the summation starts at 1 rather than 2. Observe, however, that a binary tree
with just one node has a total path length of 0, so that P(1) = 0. Thus, we can
rewrite the recurrence in Problem 12-3(d) as

P(n) = 2

n

n−1∑
k=2

P(k)+�(n)

and use the same technique as was used in Problem 7-2 to solve it.

We start by solving part (d) of Problem 7-2: showing that

n−1∑
k=2

k lg k ≤ 1

2
n2 lg n − 1

8
n2 .

Following the hint in Problem 7-2(d), we split the summation into two parts:

n−1∑
k=2

k lg k =
�n/2�−1∑

k=2

k lg k +
n−1∑

k=�n/2�
k lg k .

12-18 Solutions for Chapter 12: Binary Search Trees

The lg k in the Þrst summation on the right is less than lg(n/2) = lg n − 1, and
the lg k in the second summation is less than lg n. Thus,
n−1∑
k=2

k lg k < (lg n − 1)

�n/2�−1∑
k=2

k + lg n
n−1∑

k=�n/2�
k

= lg n
n−1∑
k=2

k −
�n/2�−1∑

k=2

k

≤ 1

2
n(n − 1) lg n − 1

2

(n

2
− 1
) n

2

≤ 1

2
n2 lg n − 1

8
n2

if n ≥ 2.

Now we show that the recurrence

P(n) = 2

n

n−1∑
k=2

P(k)+�(n)

has the solution P(n) = O(n lg n). We use the substitution method. Assume
inductively that P(n) ≤ an lg n + b for some positive constants a and b to be
determined. We can pick a and b sufÞciently large so that an lg n + b ≥ P(1).
Then, for n > 1, we have by substitution

P(n) = 2

n

n−1∑
k=2

P(k)+�(n)

≤ 2

n

n−1∑
k=2

(ak lg k + b)+�(n)

= 2a

n

n−1∑
k=2

k lg k + 2b

n
(n − 2)+�(n)

≤ 2a

n

(
1

2
n2 lg n − 1

8
n2

)
+ 2b

n
(n − 2)+�(n)

≤ an lg n − a

4
n + 2b +�(n)

= an lg n + b +
(
�(n)+ b − a

4
n
)

≤ an lg n + b ,

since we can choose a large enough so that a
4 n dominates �(n) + b. Thus,

P(n) = O(n lg n).

f. We draw an analogy between inserting an element into a subtree of a binary
search tree and sorting a subarray in quicksort. Observe that once an element x
is chosen as the root of a subtree T , all elements that will be inserted after x
into T will be compared to x . Similarly, observe that once an element y is
chosen as the pivot in a subarray S, all other elements in S will be compared
to y. Therefore, the quicksort implementation in which the comparisons are
the same as those made when inserting into a binary search tree is simply to
consider the pivots in the same order as the order in which the elements are
inserted into the tree.

Lecture Notes for Chapter 13:
Red-Black Trees

Chapter 13 overview

Red-black trees

• A variation of binary search trees.
• Balanced: height is O(lg n), where n is the number of nodes.
• Operations will take O(lg n) time in the worst case.

[These notes are a bit simpler than the treatment in the book, to make them more
amenable to a lecture situation. Our students Þrst see red-black trees in a course
that precedes our algorithms course. This set of lecture notes is intended as a
refresher for the students, bearing in mind that some time may have passed since
they last saw red-black trees.

The procedures in this chapter are rather long sequences of pseudocode. You might
want to make arrangements to project them rather than spending time writing them
on a board.]

Red-black trees

A red-black tree is a binary search tree + 1 bit per node: an attribute color, which
is either red or black.

All leaves are empty (nil) and colored black.

• We use a single sentinel, nil[T], for all the leaves of red-black tree T .
• color[nil[T]] is black.
• The root�s parent is also nil[T].

All other attributes of binary search trees are inherited by red-black trees (key, left,
right, and p). We don�t care about the key in nil[T].

Red-black properties

[Leave these up on the board.]

13-2 Lecture Notes for Chapter 13: Red-Black Trees

1. Every node is either red or black.

2. The root is black.

3. Every leaf (nil[T]) is black.

4. If a node is red, then both its children are black. (Hence no two reds in a row
on a simple path from the root to a leaf.)

5. For each node, all paths from the node to descendant leaves contain the same
number of black nodes.

Example:

26

17 41

30

38

47

50

nil[T]

h = 4
bh = 2

h = 1
bh = 1

h = 3
bh = 2

h = 2
bh = 1

h = 2
bh = 1

h = 1
bh = 1

h = 1
bh = 1

[Nodes with bold outline indicate black nodes. Don�t add heights and black-heights
yet. We won�t bother with drawing nil[T] any more.]

Height of a red-black tree

• Height of a node is the number of edges in a longest path to a leaf.
• Black-height of a node x : bh(x) is the number of black nodes (including nil[T])

on the path from x to leaf, not counting x . By property 5, black-height is well
deÞned.

[Now label the example tree with height h and bh values.]

Claim
Any node with height h has black-height ≥ h/2.

Proof By property 4, ≤ h/2 nodes on the path from the node to a leaf are red.
Hence ≥ h/2 are black. (claim)

Claim
The subtree rooted at any node x contains ≥ 2bh(x) − 1 internal nodes.

Lecture Notes for Chapter 13: Red-Black Trees 13-3

Proof By induction on height of x .

Basis: Height of x = 0 ⇒ x is a leaf ⇒ bh(x) = 0. The subtree rooted at x has 0
internal nodes. 20 − 1 = 0.

Inductive step: Let the height of x be h and bh(x) = b. Any child of x has
height h − 1 and black-height either b (if the child is red) or b − 1 (if the child is
black). By the inductive hypothesis, each child has ≥ 2bh(x)−1 − 1 internal nodes.
Thus, the subtree rooted at x contains ≥ 2 · (2bh(x)−1 − 1)+ 1 = 2bh(x)− 1 internal
nodes. (The +1 is for x itself.) (claim)

Lemma
A red-black tree with n internal nodes has height ≤ 2 lg(n + 1).

Proof Let h and b be the height and black-height of the root, respectively. By the
above two claims,

n ≥ 2b − 1 ≥ 2h/2 − 1 .

Adding 1 to both sides and then taking logs gives lg(n + 1) ≥ h/2, which implies
that h ≤ 2 lg(n + 1). (theorem)

Operations on red-black trees

The non-modifying binary-search-tree operations MINIMUM, MAXIMUM, SUC-
CESSOR, PREDECESSOR, and SEARCH run in O(height) time. Thus, they take
O(lg n) time on red-black trees.

Insertion and deletion are not so easy.

If we insert, what color to make the new node?

• Red? Might violate property 4.
• Black? Might violate property 5.

If we delete, thus removing a node, what color was the node that was removed?

• Red? OK, since we won�t have changed any black-heights, nor will we have
created two red nodes in a row. Also, cannot cause a violation of property 2,
since if the removed node was red, it could not have been the root.

• Black? Could cause there to be two reds in a row (violating property 4), and
can also cause a violation of property 5. Could also cause a violation of prop-
erty 2, if the removed node was the root and its child�which becomes the new
root�was red.

Rotations

• The basic tree-restructuring operation.
• Needed to maintain red-black trees as balanced binary search trees.
• Changes the local pointer structure. (Only pointers are changed.)

13-4 Lecture Notes for Chapter 13: Red-Black Trees

• Won�t upset the binary-search-tree property.
• Have both left rotation and right rotation. They are inverses of each other.
• A rotation takes a red-black-tree and a node within the tree.

y

x

α β

γ

x

yα

β γ

LEFT-ROTATE(T, x)

RIGHT-ROTATE(T, y)

LEFT-ROTATE(T, x)

y ← right[x] � Set y.
right[x] ← left[y] � Turn y�s left subtree into x�s right subtree.
if left[y] �= nil[T]
then p[left[y]] ← x

p[y] ← p[x] � Link x�s parent to y.
if p[x] = nil[T]
then root[T] ← y
else if x = left[p[x]]

then left[p[x]] ← y
else right[p[x]] ← y

left[y] ← x � Put x on y�s left.
p[x] ← y

[In the Þrst two printings of the second edition, this procedure contains a bug that
is corrected above (and in the third and subsequent printings). The bug is that the
assignment in line 4 (p[left[y]] ← x) should be performed only when y�s left child
is not the sentinel (which is tested in line 3). The Þrst two printings omitted this
test.]

The pseudocode for LEFT-ROTATE assumes that

• right[x] �= nil[T], and
• root�s parent is nil[T].

Pseudocode for RIGHT-ROTATE is symmetric: exchange left and right everywhere.

Example: [Use to demonstrate that rotation maintains inorder ordering of keys.
Node colors omitted.]

Lecture Notes for Chapter 13: Red-Black Trees 13-5

4

7

11

9 18

14

17

19

22

x

y

4

7

18

19

14

17

22

x

y

11

9

LEFT-ROTATE(T, x)

• Before rotation: keys of x�s left subtree ≤ 11 ≤ keys of y�s left subtree ≤ 18 ≤
keys of y�s right subtree.

• Rotation makes y�s left subtree into x�s right subtree.
• After rotation: keys of x�s left subtree ≤ 11 ≤ keys of x�s right subtree ≤ 18 ≤

keys of y�s right subtree.

Time: O(1) for both LEFT-ROTATE and RIGHT-ROTATE, since a constant number
of pointers are modiÞed.

Notes:

• Rotation is a very basic operation, also used in AVL trees and splay trees.
• Some books talk of rotating on an edge rather than on a node.

Insertion

Start by doing regular binary-search-tree insertion:

13-6 Lecture Notes for Chapter 13: Red-Black Trees

RB-INSERT(T, z)

y ← nil[T]
x ← root[T]
while x �= nil[T]

do y ← x
if key[z] < key[x]
then x ← left[x]
else x ← right[x]

p[z] ← y
if y = nil[T]
then root[T] ← z
else if key[z] < key[y]

then left[y] ← z
else right[y] ← z

left[z] ← nil[T]
right[z] ← nil[T]
color[z] ← RED

RB-INSERT-FIXUP(T, z)

• RB-INSERT ends by coloring the new node z red.
• Then it calls RB-INSERT-FIXUP because we could have violated a red-black

property.

Which property might be violated?

1. OK.

2. If z is the root, then there�s a violation. Otherwise, OK.

3. OK.

4. If p[z] is red, there�s a violation: both z and p[z] are red.

5. OK.

Remove the violation by calling RB-INSERT-FIXUP:

Lecture Notes for Chapter 13: Red-Black Trees 13-7

RB-INSERT-FIXUP(T, z)

while color[p[z]] = RED

do if p[z] = left[p[p[z]]]
then y ← right[p[p[z]]]

if color[y] = RED

then color[p[z]] ← BLACK � Case 1
color[y] ← BLACK � Case 1
color[p[p[z]]] ← RED � Case 1
z ← p[p[z]] � Case 1

else if z = right[p[z]]
then z ← p[z] � Case 2

LEFT-ROTATE(T, z) � Case 2
color[p[z]] ← BLACK � Case 3
color[p[p[z]]] ← RED � Case 3
RIGHT-ROTATE(T, p[p[z]]) � Case 3

else (same as then clause
with �right� and �left� exchanged)

color[root[T]] ← BLACK

Loop invariant:

At the start of each iteration of the while loop,

a. z is red.
b. There is at most one red-black violation:

• Property 2: z is a red root, or
• Property 4: z and p[z] are both red.

[The book has a third part of the loop invariant, but we omit it for lecture.]

Initialization: We�ve already seen why the loop invariant holds initially.

Termination: The loop terminates because p[z] is black. Hence, property 4 is
OK. Only property 2 might be violated, and the last line Þxes it.

Maintenance: We drop out when z is the root (since then p[z] is the sentinel
nil[T], which is black). When we start the loop body, the only violation is of
property 4.

There are 6 cases, 3 of which are symmetric to the other 3. The cases are not
mutually exclusive. We�ll consider cases in which p[z] is a left child.

Let y be z�s uncle (p[z]�s sibling).

13-8 Lecture Notes for Chapter 13: Red-Black Trees

Case 1: y is red

z

y

C

DA

Bα

β γ

δ ε

C

DA

Bα

β γ

δ ε

new z

y

C

DB

δ ε

C

DB

A

α β

γ δ ε

new z

A

α β

γz

If z is a right child

If z is a left child

• p[p[z]] (z�s grandparent) must be black, since z and p[z] are both red
and there are no other violations of property 4.

• Make p[z] and y black ⇒ now z and p[z] are not both red. But prop-
erty 5 might now be violated.

• Make p[p[z]] red ⇒ restores property 5.
• The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).

Case 2: y is black, z is a right child

C

A

Bα

β γ

δ

Case 2

z

y B

A

α β

γ

δ

Case 3

z

y z A

B

C

α β γ δ

C

• Left rotate around p[z] ⇒ now z is a left child, and both z and p[z] are
red.

• Takes us immediately to case 3.

Case 3: y is black, z is a left child

• Make p[z] black and p[p[z]] red.
• Then right rotate on p[p[z]].
• No longer have 2 reds in a row.
• p[z] is now black ⇒ no more iterations.

Analysis

O(lg n) time to get through RB-INSERT up to the call of RB-INSERT-FIXUP.

Within RB-INSERT-FIXUP:

Lecture Notes for Chapter 13: Red-Black Trees 13-9

• Each iteration takes O(1) time.
• Each iteration is either the last one or it moves z up 2 levels.
• O(lg n) levels ⇒ O(lg n) time.
• Also note that there are at most 2 rotations overall.

Thus, insertion into a red-black tree takes O(lg n) time.

Deletion

Start by doing regular binary-search-tree deletion:

RB-DELETE(T, z)

if left[z] = nil[T] or right[z] = nil[T]
then y ← z
else y ← TREE-SUCCESSOR(z)

if left[y] �= nil[T]
then x ← left[y]
else x ← right[y]

p[x] ← p[y]
if p[y] = nil[T]
then root[T] ← x
else if y = left[p[y]]

then left[p[y]] ← x
else right[p[y]] ← x

if y �= z
then key[z] ← key[y]

copy y�s satellite data into z
if color[y] = BLACK

then RB-DELETE-FIXUP(T, x)

return y

• y is the node that was actually spliced out.
• x is either

• y�s sole non-sentinel child before y was spliced out, or
• the sentinel, if y had no children.

In both cases, p[x] is now the node that was previously y�s parent.

If y is black, we could have violations of red-black properties:

1. OK.

2. If y is the root and x is red, then the root has become red.

3. OK.

4. Violation if p[y] and x are both red.

5. Any path containing y now has 1 fewer black node.

• Correct by giving x an �extra black.�

13-10 Lecture Notes for Chapter 13: Red-Black Trees

• Add 1 to count of black nodes on paths containing x .
• Now property 5 is OK, but property 1 is not.
• x is either doubly black (if color[x] = BLACK) or red & black (if color[x] =

RED).
• The attribute color[x] is still either RED or BLACK. No new values for color

attribute.
• In other words, the extra blackness on a node is by virtue of x pointing to the

node.

Remove the violations by calling RB-DELETE-FIXUP:

RB-DELETE-FIXUP(T, x)

while x �= root[T] and color[x] = BLACK

do if x = left[p[x]]
then w ← right[p[x]]

if color[w] = RED

then color[w] ← BLACK � Case 1
color[p[x]] ← RED � Case 1
LEFT-ROTATE(T, p[x]) � Case 1
w ← right[p[x]] � Case 1

if color[left[w]] = BLACK and color[right[w]] = BLACK

then color[w] ← RED � Case 2
x ← p[x] � Case 2

else if color[right[w]] = BLACK

then color[left[w]] ← BLACK � Case 3
color[w] ← RED � Case 3
RIGHT-ROTATE(T, w) � Case 3
w ← right[p[x]] � Case 3

color[w] ← color[p[x]] � Case 4
color[p[x]] ← BLACK � Case 4
color[right[w]] ← BLACK � Case 4
LEFT-ROTATE(T, p[x]) � Case 4
x ← root[T] � Case 4

else (same as then clause with �right� and �left� exchanged)
color[x] ← BLACK

Idea: Move the extra black up the tree until

• x points to a red & black node ⇒ turn it into a black node,
• x points to the root ⇒ just remove the extra black, or
• we can do certain rotations and recolorings and Þnish.

Within the while loop:

• x always points to a nonroot doubly black node.
• w is x�s sibling.
• w cannot be nil[T], since that would violate property 5 at p[x].

There are 8 cases, 4 of which are symmetric to the other 4. As with insertion, the
cases are not mutually exclusive. We�ll look at cases in which x is a left child.

Lecture Notes for Chapter 13: Red-Black Trees 13-11

Case 1: w is red

A

B

D

C Eα β

γ δ ε ζ

x w

A

B

C

D

E

x new w

α β γ δ

ε ζ

Case 1

• w must have black children.
• Make w black and p[x] red.
• Then left rotate on p[x].
• New sibling of x was a child of w before rotation ⇒ must be black.
• Go immediately to case 2, 3, or 4.

Case 2: w is black and both of w�s children are black

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

D

C Eα β

γ δ ε ζ

cnew x
Case 2

[Node with gray outline is of unknown color, denoted by c.]

• Take 1 black off x (⇒ singly black) and off w (⇒ red).
• Move that black to p[x].
• Do the next iteration with p[x] as the new x .
• If entered this case from case 1, then p[x] was red ⇒ new x is red & black
⇒ color attribute of new x is RED ⇒ loop terminates. Then new x is made
black in the last line.

Case 3: w is black, w�s left child is red, and w�s right child is black

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

C

Dα β γ

δ

ε ζ

x

c

new w

Case 3

E

• Make w red and w�s left child black.
• Then right rotate on w.
• New sibling w of x is black with a red right child ⇒ case 4.

13-12 Lecture Notes for Chapter 13: Red-Black Trees

Case 4: w is black, w�s left child is black, and w�s right child is red

A

B

D

C Eα β

γ δ

ε ζ

x w

c c

α β

A

B

C

D

E

new x = root[T]γ δ ε ζ

Case 4

c′ c′

[Now there are two nodes of unknown colors, denoted by c and c′.]

• Make w be p[x]�s color (c).
• Make p[x] black and w�s right child black.
• Then left rotate on p[x].
• Remove the extra black on x (⇒ x is now singly black) without violating

any red-black properties.
• All done. Setting x to root causes the loop to terminate.

Analysis

O(lg n) time to get through RB-DELETE up to the call of RB-DELETE-FIXUP.

Within RB-DELETE-FIXUP:

• Case 2 is the only case in which more iterations occur.

• x moves up 1 level.
• Hence, O(lg n) iterations.

• Each of cases 1, 3, and 4 has 1 rotation ⇒≤ 3 rotations in all.
• Hence, O(lg n) time.

[In Chapter 14, we�ll see a theorem that relies on red-black tree operations causing
at most a constant number of rotations. This is where red-black trees enjoy an
advantage over AVL trees: in the worst case, an operation on an n-node AVL tree
causes �(lg n) rotations.]

Solutions for Chapter 13:
Red-Black Trees

Solution to Exercise 13.1-3

If we color the root of a relaxed red-black tree black but make no other changes,
the resulting tree is a red-black tree. Not even any black-heights change.

Solution to Exercise 13.1-4

After absorbing each red node into its black parent, the degree of each node black
node is

• 2, if both children were already black,
• 3, if one child was black and one was red, or
• 4, if both children were red.

All leaves of the resulting tree have the same depth.

Solution to Exercise 13.1-5

In the longest path, at least every other node is black. In the shortest path, at most
every node is black. Since the two paths contain equal numbers of black nodes, the
length of the longest path is at most twice the length of the shortest path.

We can say this more precisely, as follows:

Since every path contains bh(x) black nodes, even the shortest path from x to a
descendant leaf has length at least bh(x). By deÞnition, the longest path from x
to a descendant leaf has length height(x). Since the longest path has bh(x) black
nodes and at least half the nodes on the longest path are black (by property 4),
bh(x) ≥ height(x)/2, so

length of longest path = height(x) ≤ 2 · bh(x) ≤ twice length of shortest path .

13-14 Solutions for Chapter 13: Red-Black Trees

Solution to Exercise 13.2-4

Since the exercise asks about binary search trees rather than the more speciÞc red-
black trees, we assume here that leaves are full-ßedged nodes, and we ignore the
sentinels.

Taking the book�s hint, we start by showing that with at most n − 1 right rotations,
we can convert any binary search tree into one that is just a right-going chain.

The idea is simple. Let us deÞne the right spine as the root and all descendants of
the root that are reachable by following only right pointers from the root. A binary
search tree that is just a right-going chain has all n nodes in the right spine.

As long as the tree is not just a right spine, repeatedly Þnd some node y on the right
spine that has a non-leaf left child x and then perform a right rotation on y:

γ

y

x

α β

RIGHT-ROTATE(T, y)

y

x

α

β γ

(In the above Þgure, note that any of α, β, and γ can be an empty subtree.)

Observe that this right rotation adds x to the right spine, and no other nodes leave
the right spine. Thus, this right rotation increases the number of nodes in the right
spine by 1. Any binary search tree starts out with at least one node�the root�in
the right spine. Moreover, if there are any nodes not on the right spine, then at least
one such node has a parent on the right spine. Thus, at most n − 1 right rotations
are needed to put all nodes in the right spine, so that the tree consists of a single
right-going chain.

If we knew the sequence of right rotations that transforms an arbitrary binary search
tree T to a single right-going chain T′, then we could perform this sequence in
reverse�turning each right rotation into its inverse left rotation�to transform T′
back into T .

Therefore, here is how we can transform any binary search tree T1 into any other
binary search tree T2. Let T ′ be the unique right-going chain consisting of the
nodes of T1 (which is the same as the nodes of T2). Let r = 〈r1, r2, . . . , rk〉 be a
sequence of right rotations that transforms T1 to T ′, and let r ′ = 〈r ′1, r ′2, . . . , r ′k′ 〉
be a sequence of right rotations that transforms T2 to T ′. We know that there exist
sequences r and r′ with k, k′ ≤ n − 1. For each right rotation r′i , let l ′i be the
corresponding inverse left rotation. Then the sequence 〈r1, r2, . . . , rk, l ′k′, l ′k′−1,

. . . , l ′2, l ′1〉 transforms T1 to T2 in at most 2n − 2 rotations.

Solution to Exercise 13.3-3

In Figure 13.5, nodes A, B, and D have black-height k+1 in all cases, because each
of their subtrees has black-height k and a black root. Node C has black-height k+1

Solutions for Chapter 13: Red-Black Trees 13-15

on the left (because its red children have black-height k+1) and black-height k+2
on the right (because its black children have black-height k + 1).

C

DA

Bα

β γ

δ ε

(a)

C

DA

Bα

β γ

δ ε

C

DB

δ ε

C

DB

A

α β

γ δ ε

(b)

A

α β

γ

k+1

k+1

k+1

k+1 k+1

k+2

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+2

k+1z

y

z

y

In Figure 13.6, nodes A, B, and C have black-height k + 1 in all cases. At left and
in the middle, each of A�s and B�s subtrees has black-height k and a black root,
while C has one such subtree and a red child with black-height k + 1. At the right,
each of A�s and C�s subtrees has black-height k and a black root, while B�s red
children each have black-height k + 1.

C

A

Bα

β γ

δ

Case 2

B

A

α β

γ

δ

Case 3

A

B

C

α β γ δ

C

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+1

z

y

z

y

Property 5 is preserved by the transformations. We have shown above that the
black-height is well-deÞned within the subtrees pictured, so property 5 is preserved
within those subtrees. Property 5 is preserved for the tree containing the subtrees
pictured, because every path through these subtrees to a leaf contributes k+2 black
nodes.

Solution to Exercise 13.3-4

Colors are set to red only in cases 1 and 3, and in both situations, it is p[p[z]] that
is reddened. If p[p[z]] is the sentinel, then p[z] is the root. By part (b) of the
loop invariant and line 1 of RB-INSERT-FIXUP, if p[z] is the root, then we have
dropped out of the loop. The only subtlety is in case 2, where we set z ← p[z]
before coloring p[p[z]] red. Because we rotate before the recoloring, the identity
of p[p[z]] is the same before and after case 2, so there�s no problem.

13-16 Solutions for Chapter 13: Red-Black Trees

Solution to Exercise 13.4-6

Case 1 occurs only if x�s sibling w is red. If p[x] were red, then there would be
two reds in a row, namely p[x] (which is also p[w]) and w, and we would have
had these two reds in a row even before calling RB-DELETE.

Solution to Exercise 13.4-7

No, the red-black tree will not necessarily be the same. Here are two examples:
one in which the tree�s shape changes, and one in which the shape remains the
same but the node colors change.

3

2

2

1 3

2

3

3

2 4

3

2 4

3

2 4

1

insert 1 delete 1

insert 1 delete 1

Solution to Problem 13-1

a. When inserting key k, all nodes on the path from the root to the added node
(a new leaf) must change, since the need for a new child pointer propagates up
from the new node to all of its ancestors.

When deleting a node, let y be the node actually removed and z be the node
given to the delete procedure.

• If y has at most one child, it will be removed or spliced out (see Figure 12.4,
parts (a) and (b), where y and z are the same node). All ancestors of y will
be changed. (As with insertion, the need for a new child pointer propagates
up from the removed node.)

• If z has two children, y is its successor; it is y that will be spliced out and
moved to z�s position (see Figure 12.4(c)). Therefore all ancestors of both z
and y must be changed. (Actually, this is just all ancestors of z, since z is an
ancestor of y in this case.)

In either case, y�s children (if any) are unchanged, because we have assumed
that there is no parent Þeld.

Solutions for Chapter 13: Red-Black Trees 13-17

b. We assume that we can call two procedures:

• MAKE-NEW-NODE(k) creates a new node whose key Þeld has value k and
with left and right Þelds NIL, and it returns a pointer to the new node.

• COPY-NODE(x) creates a new node whose key, left, and right Þelds have the
same values as those of node x , and it returns a pointer to the new node.

Here are two ways to write PERSISTENT-TREE-INSERT. The Þrst is a version
of TREE-INSERT, modiÞed to create new nodes along the path to where the
new node will go, and to not use parent Þelds. It returns the root of the new
tree.

PERSISTENT-TREE-INSERT(T, k)

z ← MAKE-NEW-NODE(k)

new-root ← COPY-NODE(root[T])
y ← NIL

x ← new-root
while x �= NIL

do y ← x
if key[z] < key[x]
then x ← COPY-NODE(left[x])

left[y] ← x
else x ← COPY-NODE(right[x])

right[y] ← x
if y = NIL

then new-root ← z
else if key[z] < key[y]

then left[y] ← z
else right[y] ← z

return new-root

The second is a rather elegant recursive procedure. It must be called with
root[T] instead of T as its Þrst argument (because the recursive calls pass a
node for this argument), and it returns the root of the new tree.

PERSISTENT-TREE-INSERT(r, k)

if r = NIL

then x ← MAKE-NEW-NODE(k)

else x ← COPY-NODE(r)

if k < key[r]
then left[x] ← PERSISTENT-TREE-INSERT(left[r], k)

else right[x] ← PERSISTENT-TREE-INSERT(right[r], k)

return x

c. Like TREE-INSERT, PERSISTENT-TREE-INSERT does a constant amount of
work at each node along the path from the root to the new node. Since the
length of the path is at most h, it takes O(h) time.

Since it allocates a new node (a constant amount of space) for each ancestor of
the inserted node, it also needs O(h) space.

13-18 Solutions for Chapter 13: Red-Black Trees

d. If there were parent Þelds, then because of the new root, every node of the tree
would have to be copied when a new node is inserted. To see why, observe
that the children of the root would change to point to the new root, then their
children would change to point to them, and so on. Since there are n nodes, this
change would cause insertion to create �(n) new nodes and to take �(n) time.

e. From parts (a) and (c), we know that insertion into a persistent binary search
tree of height h, like insertion into an ordinary binary search tree, takes worst-
case time O(h). A red-black tree has h = O(lg n), so insertion into an ordinary
red-black tree takes O(lg n) time. We need to show that if the red-black tree is
persistent, insertion can still be done in O(lg n) time. To do this, we will need
to show two things:

• How to still Þnd the parent pointers we need in O(1) time without using
a parent Þeld. We cannot use a parent Þeld because a persistent tree with
parent Þelds uses �(n) time for insertion (by part (d)).

• That the additional node changes made during red-black tree operations (by
rotation and recoloring) don�t cause more than O(lg n) additional nodes to
change.

Each parent pointer needed during insertion can be found in O(1) time without
having a parent Þeld as follows:

To insert into a red-black tree, we call RB-INSERT, which in turn calls RB-
INSERT-FIXUP. Make the same changes to RB-INSERT as we made to TREE-
INSERT for persistence. Additionally, as RB-INSERT walks down the tree to
Þnd the place to insert the new node, have it build a stack of the nodes it tra-
verses and pass this stack to RB-INSERT-FIXUP. RB-INSERT-FIXUP needs
parent pointers to walk back up the same path, and at any given time it needs
parent pointers only to Þnd the parent and grandparent of the node it is working
on. As RB-INSERT-FIXUP moves up the stack of parents, it needs only parent
pointers that are at known locations a constant distance away in the stack. Thus,
the parent information can be found in O(1) time, just as if it were stored in a
parent Þeld.

Rotation and recoloring change nodes as follows:

• RB-INSERT-FIXUP performs at most 2 rotations, and each rotation changes
the child pointers in 3 nodes (the node around which we rotate, that node�s
parent, and one of the children of the node around which we rotate). Thus, at
most 6 nodes are directly modiÞed by rotation during RB-INSERT-FIXUP. In
a persistent tree, all ancestors of a changed node are copied, so RB-INSERT-
FIXUP�s rotations take O(lg n) time to change nodes due to rotation. (Ac-
tually, the changed nodes in this case share a single O(lg n)-length path of
ancestors.)

• RB-INSERT-FIXUP recolors some of the inserted node�s ancestors, which
are being changed anyway in persistent insertion, and some children of an-
cestors (the �uncles� referred to in the algorithm description). There are
at most O(lg n) ancestors, hence at most O(lg n) color changes of uncles.
Recoloring uncles doesn�t cause any additional node changes due to persis-
tence, because the ancestors of the uncles are the same nodes (ancestors of

Solutions for Chapter 13: Red-Black Trees 13-19

the inserted node) that are being changed anyway due to persistence. Thus,
recoloring does not affect the O(lg n) running time, even with persistence.

We could show similarly that deletion in a persistent tree also takes worst-case
time O(h).

• We already saw in part (a) that O(h) nodes change.
• We could write a persistent RB-DELETE procedure that runs in O(h) time,

analogous to the changes we made for persistence in insertion. But to do so
without using parent pointers we need to walk down the tree to the node to be
deleted, to build up a stack of parents as discussed above for insertion. This
is a little tricky if the set�s keys are not distinct, because in order to Þnd the
path to the node to delete�a particular node with a given key�we have to
make some changes to how we store things in the tree, so that duplicate keys
can be distinguished. The easiest way is to have each key take a second part
that is unique, and to use this second part as a tiebreaker when comparing
keys.

Then the problem of showing that deletion needs only O(lg n) time in a persis-
tent red-black tree is the same as for insertion.

• As for insertion, we can show that the parents needed by RB-DELETE-
FIXUP can be found in O(1) time (using the same technique as for insertion).

• Also, RB-DELETE-FIXUP performs at most 3 rotations, which as discussed
above for insertion requires O(lg n) time to change nodes due to persistence.
It also does O(lg n) color changes, which (as for insertion) take only O(lg n)

time to change ancestors due to persistence, because the number of copied
nodes is O(lg n).

Lecture Notes for Chapter 14:
Augmenting Data Structures

Chapter 14 overview

We�ll be looking at methods for designing algorithms. In some cases, the design
will be intermixed with analysis. In other cases, the analysis is easy, and it�s the
design that�s harder.

Augmenting data structures

• It�s unusual to have to design an all-new data structure from scratch.
• It�s more common to take a data structure that you know and store additional

information in it.
• With the new information, the data structure can support new operations.
• But. . . you have to Þgure out how to correctly maintain the new information

without loss of efÞciency.

We�ll look at a couple of situations in which we augment red-black trees.

Dynamic order statistics

We want to support the usual dynamic-set operations from R-B trees, plus:

• OS-SELECT(x, i): return pointer to node containing the i th smallest key of the
subtree rooted at x .

• OS-RANK(T, x): return the rank of x in the linear order determined by an
inorder walk of T .

Augment by storing in each node x :

size[x] = # of nodes in subtree rooted at x .

• Includes x itself.
• Does not include leaves (sentinels).

DeÞne for sentinel size[nil[T]] = 0.

Then size[x] = size[left[x]] + size[right[x]] + 1.

14-2 Lecture Notes for Chapter 14: Augmenting Data Structures

M

8

B

B B

BR

R R

R

i=5
r=6

i=3
r=2

i=1
r=1

i=5
r=2

M

8

M

8

P

2

M

8

Q

1

M

8

C

5

M

8

A

1

M

8

F

3

M

8

D

1

M

8

H

1

[Example above: Ignore colors, but legal coloring shown with �R� and �B� nota-
tions. Values of i and r are for the example below.]
Note: OK for keys to not be distinct. Rank is deÞned with respect to position in
inorder walk. So if we changed D to C, rank of original C is 2, rank of D changed
to C is 3.

OS-SELECT(x, i)

r ← size[left[x]]+1
if i = r
then return x

elseif i < r
then return OS-SELECT(left[x], i)

else return OS-SELECT(right[x], i − r)

Initial call: OS-SELECT(root[T], i)

Try OS-SELECT(root[T], 5). [Values shown in Þgure above. Returns node whose
key is H.]

Correctness: r = rank of x within subtree rooted at x .
• If i = r , then we want x .
• If i < r , then i th smallest element is in x�s left subtree, and we want the i th

smallest element in the subtree.
• If i > r , then i th smallest element is in x�s right subtree, but subtract off the r

elements in x�s subtree that precede those in x�s right subtree.
• Like the randomized SELECT algorithm!

Analysis: Each recursive call goes down one level. Since R-B tree has O(lg n)

levels, have O(lg n) calls ⇒ O(lg n) time.

OS-RANK(T, x)

r ← size[left[x]] + 1
y ← x
while y �= root[T]

do if y = right[p[y]]
then r ← r + size[left[p[y]]] + 1

y ← p[y]
return r

Lecture Notes for Chapter 14: Augmenting Data Structures 14-3

Demo: Node D.

Why does this work?

Loop invariant: At start of each iteration of while loop, r = rank of key[x]
in subtree rooted at y.

Initialization: Initially, r = rank of key[x] in subtree rooted at x , and y = x .

Termination: Loop terminates when y = root[T] ⇒ subtree rooted at y is entire
tree. Therefore, r = rank of key[x] in entire tree.

Maintenance: At end of each iteration, set y ← p[y]. So, show that if r = rank
of key[x] in subtree rooted at y at start of loop body, then r = rank of key[x] in
subtree rooted at p[y] at end of loop body.

x

y

[r = # of nodes in subtree rooted at y preceding x in inorder walk]

Must add nodes in y�s sibling�s subtree.

• If y is a left child, its sibling�s subtree follows all nodes in y�s subtree ⇒
don�t change r .

• If y is a right child, all nodes in y�s sibling�s subtree precede all nodes in y�s
subtree ⇒ add size of y�s sibling�s subtree, plus 1 for p[y], into r .

yleft[p[y]]

p[y]

Analysis: y goes up one level in each iteration ⇒ O(lg n) time.

Maintaining subtree sizes

• Need to maintain size[x] Þelds during insert and delete operations.
• Need to maintain them efÞciently. Otherwise, might have to recompute them

all, at a cost of �(n).

Will see how to maintain without increasing O(lg n) time for insert and delete.

Insert:

• During pass downward, we know that the new node will be a descendant of
each node we visit, and only of these nodes. Therefore, increment size Þeld of
each node visited.

14-4 Lecture Notes for Chapter 14: Augmenting Data Structures

• Then there�s the Þxup pass:

• Goes up the tree.
• Changes colors O(lg n) times.
• Performs ≤ 2 rotations.

• Color changes don�t affect subtree sizes.
• Rotations do!
• But we can determine new sizes based on old sizes and sizes of children.

LEFT-ROTATE(T, x)
x

y x

yM

8

C

5

M

8

A

1

M

8

F

3

M

8

D

1

M

8

H

1

M

8

D

1

M

8

C

3

M

8

F

5

M

8

A

1

M

8

H

1

size[y] ← size[x]

size[x] ← size[left[x]] + size[right[x]] + 1

• Similar for right rotation.
• Therefore, can update in O(1) time per rotation ⇒ O(1) time spent updating

size Þelds during Þxup.
• Therefore, O(lg n) to insert.

Delete: Also 2 phases:

1. Splice out some node y.

2. Fixup.

After splicing out y, traverse a path y → root, decrementing size in each node on
path. O(lg n) time.

During Þxup, like insertion, only color changes and rotations.

• ≤ 3 rotations ⇒ O(1) time spent updating size Þelds during Þxup.
• Therefore, O(lg n) to delete.

Done!

Methodology for augmenting a data structure

1. Choose an underlying data structure.

2. Determine additional information to maintain.

Lecture Notes for Chapter 14: Augmenting Data Structures 14-5

3. Verify that we can maintain additional information for existing data structure
operations.

4. Develop new operations.

Don�t need to do these steps in strict order! Usually do a little of each, in parallel.

How did we do them for OS trees?

1. R-B tree.

2. size[x].

3. Showed how to maintain size during insert and delete.

4. Developed OS-SELECT and OS-RANK.

Red-black trees are particularly amenable to augmentation.

Theorem
Augment a R-B tree with Þeld f , where f [x] depends only on information in x ,
left[x], and right[x] (including f [left[x]] and f [right[x]]). Then can maintain
values of f in all nodes during insert and delete without affecting O(lg n) perfor-
mance.

Proof Since f [x] depends only on x and its children, when we alter information
in x , changes propagate only upward (to p[x], p[p[x]], . . . , root).

Height = O(lg n)⇒ O(lg n) updates, at O(1) each.

Insertion: Insert a node as child of existing node. Even if can�t update f on way
down, can go up from inserted node to update f . During Þxup, only changes come
from color changes (no effect on f) and rotations. Each rotation affects f of ≤ 3
nodes (x ,y, and parent), and can recompute each in O(1) time. Then, if necessary,
propagate changes up the tree. Therefore, O(lg n) time per rotation. Since ≤ 2
rotations, O(lg n) time to update f during Þxup.

Delete: Same idea. After splicing out a node, go up from there to update f . Fixup
has ≤ 3 rotations. O(lg n) per rotation ⇒ O(lg n) to update f during Þxup.

(theorem)

For some attributes, can get away with O(1) per rotation. Example: size Þeld.

Interval trees

Maintain a set of intervals. For instance, time intervals.

4

5

7

15

17

21 23

19

18

10

11

8

i=[7,10]
low[i] = 7 high[i] = 10

[leave on board]

14-6 Lecture Notes for Chapter 14: Augmenting Data Structures

Operations

• INTERVAL-INSERT(T, x): int[x] already Þlled in.
• INTERVAL-DELETE(T, x)

• INTERVAL-SEARCH(T, i): return pointer to a node x in T such that int[x] over-
laps interval i . Any overlapping node in T is OK. Return pointer to sentinel
nil[T] if no overlapping node in T .

Interval i has low[i], high[i].

i and j overlap if and only if low[i] ≤ high[j] and low[j] ≤ high[i].

(Go through examples of proper inclusion, overlap without proper inclusion, no
overlap.)

Another way: i and j don�t overlap if and only if: low[i] > high[j] or low[j] >

high[i]. [leave this on board]

Recall the 4-part methodology.

For interval trees

1. Use R-B trees.

• Each node x contains interval int[x].
• Key is low endpoint (low[int[x]]).
• Inorder walk would list intervals sorted by low endpoint.

2. Each node x contains

max[x] = max endpoint value in subtree rooted at x .

int

max
M

8

[17,19]

23

M

8

[21,23]

23

M

8

[5,11]

18

M

8

[15,18]

18

M

8

[4,8]

8

M

8

[7,10]

10

[leave on board]

max[x] = max

⎧⎨⎩high[int[x]] ,

max[left[x]] ,

max[right[x]]

Could max[left[x]] > max[right[x]]? Sure. Position in tree is determined only
by low endpoints, not high endpoints.

3. Maintaining the information.

Lecture Notes for Chapter 14: Augmenting Data Structures 14-7

• This is easy�max[x] depends only on:

• information in x : high[int[x]]
• information in left[x]: max[left[x]]
• information in right[x]: max[right[x]]

• Apply the theorem.
• In fact, can update max on way down during insertion, and in O(1) time per

rotation.

4. Developing new operations.

INTERVAL-SEARCH(T, i)

x ← root[T]
while x �= nil[T] and i does not overlap int[x]

do if left[x] �= nil[T] and max[left[x]] ≥ low[i]
then x ← left[x]
else x ← right[x]

return x

Examples: Search for [14, 16] and [12, 14].

Time: O(lg n).

Correctness: Key idea: need check only 1 of node�s 2 children.

Theorem
If search goes right, then either:

• There is an overlap in right subtree, or
• There is no overlap in either subtree.

If search goes left, then either:

• There is an overlap in left subtree, or
• There is no overlap in either subtree.

Proof If search goes right:

• If there is an overlap in right subtree, done.
• If there is no overlap in right, show there is no overlap in left. Went right

because

• left[x] = nil[T] ⇒ no overlap in left.

OR
• max[left[x]] < low[i] ⇒ no overlap in left.

i

max[left[x]] = highest endpoint in left

14-8 Lecture Notes for Chapter 14: Augmenting Data Structures

If search goes left:

• If there is an overlap in left subtree, done.
• If there is no overlap in left, show there is no overlap in right.

• Went left because:

low[i] ≤ max[left[x]]

= high[j] for some j in left subtree .

• Since there is no overlap in left, i and j don�t overlap.
• Refer back to: no overlap if

low[i] > high[j] or low[j] > high[i] .

• Since low[i] ≤ high[j], must have low[j] > high[i].
• Now consider any interval k in right subtree.
• Because keys are low endpoint,

low[j]︸ ︷︷ ︸
in left

≤ low[k]︸ ︷︷ ︸
in right

.

• Therefore, high[i] < low[j] ≤ low[k].
• Therefore, high[i] < low[k].
• Therefore, i and k do not overlap. (theorem)

Solutions for Chapter 14:
Augmenting Data Structures

Solution to Exercise 14.1-5

Given an element x in an n-node order-statistic tree T and a natural number i , the
following procedure retrieves the i th successor of x in the linear order of T :

OS-SUCCESSOR(T, x, i)

r ← OS-RANK(T, x)

s ← r + i
return OS-SELECT(root[T], s)

Since OS-RANK and OS-SELECT each take O(lg n) time, so does the procedure
OS-SUCCESSOR.

Solution to Exercise 14.1-6

When inserting node z, we search down the tree for the proper place for z. For each
node x on this path, add 1 to rank[x] if y is inserted within x�s left subtree, and
leave rank[x] unchanged if y is inserted within x�s right subtree. Similarly when
deleting, subtract 1 from rank[x] whenever the spliced-out node y had been in x�s
left subtree.

We also need to handle the rotations that occur during the Þxup procedures for
insertion and deletion. Consider a left rotation on node x , where the pre-rotation
right child of x is y (so that x becomes y�s left child after the left rotation). We
leave rank[x] unchanged, and letting r = rank[y] before the rotation, we set
rank[y] ← r + rank[x]. Right rotations are handled in an analogous manner.

Solution to Exercise 14.1-7

Let A[1 . . n] be the array of n distinct numbers.

One way to count the inversions is to add up, for each element, the number of larger
elements that precede it in the array:

14-10 Solutions for Chapter 14: Augmenting Data Structures

of inversions =
n∑

j=1

|Inv(j)| ,

where Inv(j) = {i : i < j and A[i] > A[j]}.
Note that |Inv(j)| is related to A[j]�s rank in the subarray A[1 . . j] because the
elements in Inv(j) are the reason that A[j] is not positioned according to its rank.
Let r(j) be the rank of A[j] in A[1 . . j]. Then j = r(j) + |Inv(j)|, so we can
compute

|Inv(j)| = j − r(j)

by inserting A[1], . . . , A[n] into an order-statistic tree and using OS-RANK to Þnd
the rank of each A[j] in the tree immediately after it is inserted into the tree. (This
OS-RANK value is r(j).)

Insertion and OS-RANK each take O(lg n) time, and so the total time for n ele-
ments is O(n lg n).

Solution to Exercise 14.2-2

Yes, by Theorem 14.1, because the black-height of a node can be computed from
the information at the node and its two children. Actually, the black-height can
be computed from just one child�s information: the black-height of a node is the
black-height of a red child, or the black height of a black child plus one. The
second child does not need to be checked because of property 5 of red-black trees.

Within the RB-INSERT-FIXUP and RB-DELETE-FIXUP procedures are color
changes, each of which potentially cause O(lg n) black-height changes. Let us
show that the color changes of the Þxup procedures cause only local black-height
changes and thus are constant-time operations. Assume that the black-height of
each node x is kept in the Þeld bh[x].

For RB-INSERT-FIXUP, there are 3 cases to examine.

Case 1: z�s uncle is red.

C

DA

Bα

β γ

δ ε

(a)

C

DA

Bα

β γ

δ ε

C

DB

δ ε

C

DB

A

α β

γ δ ε

(b)

A

α β

γ

k+1

k+1

k+1

k+1 k+1

k+2

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+2

k+1z

y

z

y

Solutions for Chapter 14: Augmenting Data Structures 14-11

• Before color changes, suppose that all subtrees α, β, γ, δ, ε have the same
black-height k with a black root, so that nodes A, B, C , and D have black-
heights of k + 1.

• After color changes, the only node whose black-height changed is node C .
To Þx that, add bh[p[p[z]]] = bh[p[p[z]]] + 1 after line 7 in RB-INSERT-
FIXUP.

• Since the number of black nodes between p[p[z]] and z remains the same,
nodes above p[p[z]] are not affected by the color change.

Case 2: z�s uncle y is black, and z is a right child.

Case 3: z′�s uncle y is black, and z is a left child.

C

A

Bα

β γ

δ

Case 2

B

A

α β

γ

δ

Case 3

A

B

C

α β γ δ

C

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+1

z

y

z

y

• With subtrees α, β, γ, δ, ε of black-height k, we see that even with color
changes and rotations, the black-heights of nodes A, B, and C remain the
same (k + 1).

Thus, RB-INSERT-FIXUP maintains its original O(lg n) time.

For RB-DELETE-FIXUP, there are 4 cases to examine.

Case 1: x�s sibling w is red.

A

B

D

C Eα β

γ δ ε ζ

x w

A

B

C

D

E

x new w

α β γ δ

ε ζ

Case 1

• Even though case 1 changes colors of nodes and does a rotation, black-
heights are not changed.

• Case 1 changes the structure of the tree, but waits for cases 2, 3, and 4 to
deal with the �extra black� on x .

Case 2: x�s sibling w is black, and both of w�s children are black.

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

D

C Eα β

γ δ ε ζ

cnew x
Case 2

14-12 Solutions for Chapter 14: Augmenting Data Structures

• w is colored red, and x�s �extra� black is moved up to p[x].
• Now we can add bh[p[x]] = bh[x] after line 10 in RB-DELETE-FIXUP.
• This is a constant-time update. Then, keep looping to deal with the extra

black on p[x].

Case 3: x�s sibling w is black, w�s left child is red, and w�s right child is black.

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

C

Dα β γ

δ

ε ζ

x

c

new w

Case 3

E

• Regardless of the color changes and rotation of this case, the black-heights
don�t change.

• Case 3 just sets up the structure of the tree, so it can fall correctly into case 4.

Case 4: x�s sibling w is black, and w�s right child is red.

A

B

D

C Eα β

γ δ

ε ζ

x w

c c

α β

A

B

C

D

E

new x = root[T]γ δ ε ζ

Case 4

c′ c′

• Nodes A, C , and E keep the same subtrees, so their black-heights don�t
change.

• Add these two constant-time assignments in RB-DELETE-FIXUP after
line 20:
bh[p[x]] = bh[x] + 1.
bh[p[p[x]]] = bh[p[x]] + 1.

• The extra black is taken care of. Loop terminates.

Thus, RB-DELETE-FIXUP maintains its original O(lg n) time.

Therefore, we conclude that black-heights of nodes can be maintained as Þelds
in red-black trees without affecting the asymptotic performance of red-black tree
operations.

Solution to Exercise 14.2-3

No, because the depth of a node depends on the depth of its parent. When the depth
of a node changes, the depths of all nodes below it in the tree must be updated.
Updating the root node causes n− 1 other nodes to be updated, which would mean
that operations on the tree that change node depths might not run in O(n lg n) time.

Solutions for Chapter 14: Augmenting Data Structures 14-13

Solution to Exercise 14.3-3

As it travels down the tree, INTERVAL-SEARCH Þrst checks whether current node x
overlaps the query interval i and, if it does not, goes down to either the left or right
child. If node x overlaps i , and some node in the right subtree overlaps i , but
no node in the left subtree overlaps i , then because the keys are low endpoints,
this order of checking (Þrst x , then one child) will return the overlapping interval
with the minimum low endpoint. On the other hand, if there is an interval that
overlaps i in the left subtree of x , then checking x before the left subtree might
cause the procedure to return an interval whose low endpoint is not the minimum
of those that overlap i . Therefore, if there is a possibility that the left subtree might
contain an interval that overlaps i , we need to check the left subtree Þrst. If there is
no overlap in the left subtree but node x overlaps i , then we return x . We check the
right subtree under the same conditions as in INTERVAL-SEARCH: the left subtree
cannot contain an interval that overlaps i , and node x does not overlap i , either.

Because we might search the left subtree Þrst, it is easier to write the pseudocode to
use a recursive procedure MIN-INTERVAL-SEARCH-FROM(T, x, i), which returns
the node overlapping i with the minimum low endpoint in the subtree rooted at x ,
or nil[T] if there is no such node.

MIN-INTERVAL-SEARCH(T, i)

return MIN-INTERVAL-SEARCH-FROM(T, root[T], i)

MIN-INTERVAL-SEARCH-FROM(T, x, i)

if left[x] �= nil[T] and max[left[x]] ≥ low[i]
then y ← MIN-INTERVAL-SEARCH-FROM(T, left[x], i)

if y �= nil[T]
then return y

elseif i overlaps int[x]
then return x

else return nil[T]
elseif i overlaps int[x]
then return x

else return MIN-INTERVAL-SEARCH-FROM(T, right[x], i)

The call MIN-INTERVAL-SEARCH(T, i) takes O(lg n) time, since each recursive
call of MIN-INTERVAL-SEARCH-FROM goes one node lower in the tree, and the
height of the tree is O(lg n).

Solution to Exercise 14.3-6

1. Underlying data structure:
A red-black tree in which the numbers in the set are stored simply as the keys
of the nodes.

14-14 Solutions for Chapter 14: Augmenting Data Structures

SEARCH is then just the ordinary TREE-SEARCH for binary search trees, which
runs in O(lg n) time on red-black trees.

2. Additional information:
The red-black tree is augmented by the following Þelds in each node x :

• min-gap[x] contains the minimum gap in the subtree rooted at x . It has the
magnitude of the difference of the two closest numbers in the subtree rooted
at x . If x is a leaf (its children are all nil[T]), let min-gap[x] = ∞.

• min-val[x] contains the minimum value (key) in the subtree rooted at x .
• max-val[x] contains the maximum value (key) in the subtree rooted at x .

3. Maintaining the information:
The three Þelds added to the tree can each be computed from information in the
node and its children. Hence by Theorem 14.1, they can be maintained during
insertion and deletion without affecting the O(lg n) running time:

min-val[x] =
{

min-val[left[x]] if there�s a left subtree ,

key[x] otherwise ,

max-val[x] =
{

max-val[right[x]] if there�s a right subtree ,

key[x] otherwise ,

min-gap[x] = min

⎧⎪⎪⎨⎪⎪⎩
min-gap[left[x]] (∞ if no left subtree) ,

min-gap[right[x]] (∞ if no right subtree) ,

key[x]− max-val[left[x]] (∞ if no left subtree) ,

min-val[right[x]] − key[x] (∞ if no right subtree) .

In fact, the reason for deÞning the min-val and max-val Þelds is to make it
possible to compute min-gap from information at the node and its children.

4. New operation:
MIN-GAP simply returns the min-gap stored at the tree root. Thus, its running
time is O(1).

Note that in addition (not asked for in the exercise), it is possible to Þnd the
two closest numbers in O(lg n) time. Starting from the root, look for where the
minimum gap (the one stored at the root) came from. At each node x , simulate
the computation of min-gap[x] to Þgure out where min-gap[x] came from. If
it came from a subtree�s min-gap Þeld, continue the search in that subtree. If
it came from a computation with x�s key, then x and that other number are the
closest numbers.

Solution to Exercise 14.3-7

General idea: Move a sweep line from left to right, while maintaining the set of
rectangles currently intersected by the line in an interval tree. The interval tree
will organize all rectangles whose x interval includes the current position of the
sweep line, and it will be based on the y intervals of the rectangles, so that any
overlapping y intervals in the interval tree correspond to overlapping rectangles.

Solutions for Chapter 14: Augmenting Data Structures 14-15

Details:

1. Sort the rectangles by their x-coordinates. (Actually, each rectangle must ap-
pear twice in the sorted list�once for its left x-coordinate and once for its right
x-coordinate.)

2. Scan the sorted list (from lowest to highest x-coordinate).

• When an x-coordinate of a left edge is found, check whether the rectangle�s
y-coordinate interval overlaps an interval in the tree, and insert the rectangle
(keyed on its y-coordinate interval) into the tree.

• When an x-coordinate of a right edge is found, delete the rectangle from the
interval tree.

The interval tree always contains the set of �open� rectangles intersected by the
sweep line. If an overlap is ever found in the interval tree, there are overlapping
rectangles.

Time: O(n lg n)

• O(n lg n) to sort the rectangles (we can use merge sort or heap sort).
• O(n lg n) for interval-tree operations (insert, delete, and check for overlap).

Solution to Problem 14-1

a. Assume for the purpose of contradiction that there is no point of maximum
overlap in an endpoint of a segment. The maximum overlap point p is in the
interior of m segments. Actually, p is in the interior of the intersection of those
m segments. Now look at one of the endpoints p′ of the intersection of the m
segments. Point p′ has the same overlap as p because it is in the same intersec-
tion of m segments, and so p′ is also a point of maximum overlap. Moreover, p′
is in the endpoint of a segment (otherwise the intersection would not end there),
which contradicts our assumption that there is no point of maximum overlap in
an endpoint of a segment. Thus, there is always a point of maximum overlap
which is an endpoint of one of the segments.

b. Keep a balanced binary tree of the endpoints. That is, to insert an interval,
we insert its endpoints separately. With each left endpoint e, associate a value
p[e] = +1 (increasing the overlap by 1). With each right endpoint e associate a
value p[e] = −1 (decreasing the overlap by 1). When multiple endpoints have
the same value, insert all the left endpoints with that value before inserting any
of the right endpoints with that value.

Here�s some intuition. Let e1, e2, . . . , en be the sorted sequence of endpoints
corresponding to our intervals. Let s(i, j) denote the sum p[ei] + p[ei+1] +
· · · + p[e j] for 1 ≤ i ≤ j ≤ n. We wish to Þnd an i maximizing s(1, i).

Each node x stores three new attributes. Suppose that the subtree rooted at x
includes the endpoints el[x], . . . , er[x]. We store v[x] = s(l[x], r[x]), the sum of
the values of all nodes in x�s subtree. We also store m[x], the maximum value

14-16 Solutions for Chapter 14: Augmenting Data Structures

obtained by the expression s(l[x], i) for any i in {l[x], l[x] + 1, . . . , r[x]}. Fi-
nally, we store o[x] as the value of i for which m[x] achieves its maximum. For
the sentinel, we deÞne v[nil[T]] = m[nil[T]] = 0.

We can compute these attributes in a bottom-up fashion to satisfy the require-
ments of Theorem 14.1:

v[x] = v[left[x]] + p[x] + v[right[x]] ,

m[x] = max

⎧⎨⎩m[left[x]] (max is in x�s left subtree) ,

v[left[x]] + p[x] (max is at x) ,

v[left[x]] + p[x] + m[right[x]] (max is in x�s right subtree) .

The computation of v[x] is straightforward. The computation of m[x] bears
further explanation. Recall that it is the maximum value of the sum of the
p values for the nodes in x�s subtree, starting at l[x], which is the leftmost
endpoint in x�s subtree and ending at any node i in x�s subtree. The value
of i that maximizes this sum is either a node in x�s left subtree, x itself, or
a node in x�s right subtree. If i is a node in x�s left subtree, then m[left[x]]
represents a sum starting at l[x], and hence m[x] = m[left[x]]. If i is x itself,
then m[x] represents the sum of all p values in x�s left subtree plus p[x], so
that m[x] = v[left[x]] + p[x]. Finally, if i is in x�s right subtree, then m[x]
represents the sum of all p values in x�s left subtree, plus p[x], plus the sum
of some set of p values in x�s right subtree. Moreover, the values taken from
x�s right subtree must start from the leftmost endpoint in the right subtree. To
maximize this sum, we need to maximize the sum from the right subtree, and
that value is precisely m[right[x]]. Hence, in this case, m[x] = v[left[x]] +
p[x] + m[right[x]].

Once we understand how to compute m[x], it is straightforward to compute
o[x] from the information in x and its two children. Thus, we can implement
the operations as follows:

• INTERVAL-INSERT: insert two nodes, one for each endpoint of the interval.
• INTERVAL-DELETE: delete the two nodes representing the interval end-

points.
• FIND-POM: return the interval whose endpoint is represented by o[root[T]].

Because of how we have deÞned the new attributes, Theorem 14.1 says that
each operation runs in O(lg n) time. In fact, FIND-POM takes only O(1) time.

Solution to Problem 14-2

a. We use a circular list in which each element has two Þelds, key and next. At
the beginning, we initialize the list to contain the keys 1, 2, . . . , n in that order.
This initialization takes O(n) time, since there is only a constant amount of
work per element (i.e., setting its key and its next Þelds). We make the list
circular by letting the next Þeld of the last element point to the Þrst element.

We then start scanning the list from the beginning. We output and then delete
every mth element, until the list becomes empty. The output sequence is the

Solutions for Chapter 14: Augmenting Data Structures 14-17

(n, m)-Josephus permutation. This process takes O(m) time per element, for a
total time of O(mn). Since m is a constant, we get O(mn) = O(n) time, as
required.

b. We can use an order-statistic tree, straight out of Section 14.1. Why? Suppose
that we are at a particular spot in the permutation, and let�s say that it�s the j th
largest remaining person. Suppose that there are k ≤ n people remaining. Then
we will remove person j , decrement k to reßect having removed this person,
and then go on to the (j+m−1)th largest remaining person (subtract 1 because
we have just removed the j th largest). But that assumes that j +m ≤ k. If not,
then we use a little modular arithmetic, as shown below.

In detail, we use an order-statistic tree T , and we call the procedures OS-
INSERT, OS-DELETE, OS-RANK, and OS-SELECT:

JOSEPHUS(n, m)

initialize T to be empty
for j ← 1 to n

do create a node x with key[x] = j
OS-INSERT(T, x)

k ← n
j ← m
while k > 2

do x ← OS-SELECT(root[T], j)
print key[x]
OS-DELETE(T, x)

k ← k − 1
j ← ((j + m − 2) mod k)+ 1

print key[OS-SELECT(root[T], 1)]

The above procedure is easier to understand. Here�s a streamlined version:

JOSEPHUS(n, m)

initialize T to be empty
for j ← 1 to n

do create a node x with key[x] = j
OS-INSERT(T, x)

j ← 1
for k ← n downto 1

do j ← ((j + m − 2) mod k)+ 1
x ← OS-SELECT(root[T], j)
print key[x]
OS-DELETE(T, x)

Either way, it takes O(n lg n) time to build up the order-statistic tree T , and
then we make O(n) calls to the order-statistic-tree procedures, each of which
takes O(lg n) time. Thus, the total time is O(n lg n).

Lecture Notes for Chapter 15:
Dynamic Programming

Dynamic Programming

• Not a speciÞc algorithm, but a technique (like divide-and-conquer).
• Developed back in the day when �programming� meant �tabular method� (like

linear programming). Doesn�t really refer to computer programming.
• Used for optimization problems:

• Find a solution with the optimal value.
• Minimization or maximization. (We�ll see both.)

Four-step method

1. Characterize the structure of an optimal solution.

2. Recursively deÞne the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

4. Construct an optimal solution from computed information.

Assembly-line scheduling

A simple dynamic-programming example. Actually, solvable by a graph algorithm
that we�ll see later in the course. But a good warm-up for dynamic programming.

[New in the second edition of the book.]

15-2 Lecture Notes for Chapter 15: Dynamic Programming

a1,1

e1

enter

e2

a2,1

a1,2

a2,2

t1,1

t2,1

t1,2

t2,2

a1,3

a2,3

t1,3

t2,3

a1,4

a2,4

t1,4

t2,4

a1,5

a2,5

x1

x2

exit

S1,1

S2,1

S1,2

S2,2

S1,3

S2,3

S1,4

S2,4

S1,5

S2,5

2

4

7

8

2

2

9

3

1

5

3 4 8

3
1 3

2 2

6 4 5

6

Automobile factory with two assembly lines.

• Each line has n stations: S1,1, . . . , S1,n and S2,1, . . . , S2,n.
• Corresponding stations S1, j and S2, j perform the same function but can take

different amounts of time a1, j and a2, j .
• Entry times e1 and e2.
• Exit times x1 and x2.
• After going through a station, can either

• stay on same line; no cost, or
• transfer to other line; cost after Si, j is ti, j . (j = 1, . . . , n−1. No ti,n , because

the assembly line is done after Si,n .)

Problem: Given all these costs (time = cost), what stations should be chosen from
line 1 and from line 2 for fastest way through factory?

Try all possibilities?

• Each candidate is fully speciÞed by which stations from line 1 are included.
Looking for a subset of line 1 stations.

• Line 1 has n stations.
• 2n subsets.
• Infeasible when n is large.

Structure of an optimal solution

Think about fastest way from entry through S1, j .

• If j = 1, easy: just determine how long it takes to get through S1,1.
• If j ≥ 2, have two choices of how to get to S1, j :

• Through S1, j−1, then directly to S1, j .
• Through S2, j−1, then transfer over to S1, j .

Suppose fastest way is through S1, j−1.

Lecture Notes for Chapter 15: Dynamic Programming 15-3

Key observation: We must have taken a fastest way from entry through S1, j−1 in
this solution. If there were a faster way through S1, j−1, we would use it instead to
come up with a faster way through S1, j .

Now suppose a fastest way is through S2, j−1. Again, we must have taken a fastest
way through S2, j−1. Otherwise use some faster way through S2, j−1 to give a faster
way through S1, j

Generally: An optimal solution to a problem (fastest way through S1, j) contains
within it an optimal solution to subproblems (fastest way through S1, j−1 or S2, j−1).

This is optimal substructure.

Use optimal substructure to construct optimal solution to problem from optimal
solutions to subproblems.

Fastest way through S1, j is either

• fastest way through S1, j−1 then directly through S1, j , or
• fastest way through S2, j−1, transfer from line 2 to line 1, then through S1, j .

Symmetrically:

Fastest way through S2, j is either

• fastest way through S2, j−1 then directly through S2, j , or
• fastest way through S1, j−1, transfer from line 1 to line 2, then through S2, j .

Therefore, to solve problems of Þnding a fastest way through S1, j and S2, j , solve
subproblems of Þnding a fastest way through S1, j−1 and S2, j−1.

Recursive solution

Let fi [j] = fastest time to get through Si, j , i = 1, 2 and j = 1, . . . , n.

Goal: fastest time to get all the way through = f∗.
f ∗ = min(f1[n]+ x1, f2[n]+ x2)

f1[1] = e1 + a1,1

f2[1] = e2 + a2,1

For j = 2, . . . , n:

f1[j] = min(f1[j − 1]+ a1, j , f2[j − 1]+ t2, j−1 + a1, j)

f2[j] = min(f2[j − 1]+ a2, j , f1[j − 1]+ t1, j−1 + a2, j)

fi [j] gives the value of an optimal solution. What if we want to construct an
optimal solution?

• li [j] = line # (1 or 2) whose station j − 1 is used in fastest way through Si, j .
• In other words Sli [j], j−1 precedes Si, j .
• DeÞned for i = 1, 2 and j = 2, . . . , n.
• l∗ = line # whose station n is used.

15-4 Lecture Notes for Chapter 15: Dynamic Programming

For example:

9

12

18

16

20

22

24

25

32

30

1 2 3 4 5

f1[j]

f2[j]

j

f * = 35

1

1

2

2

1

1

1

2

2 3 4 5

l1[j]

l2[j]

j

l* = 1

Go through optimal way given by l values. (Shaded path in earlier Þgure.)

Compute an optimal solution

Could just write a recursive algorithm based on above recurrences.

• Let ri(j) = # of references made to fi [j].
• r1(n) = r2(n) = 1.
• r1(j) = r2(j) = r1(j + 1)+ r2(j + 1) for j = 1, . . . , n − 1.

Claim
ri (j) = 2n− j .

Proof Induction on j , down from n.

Basis: j = n. 2n− j = 20 = 1 = ri (n).

Inductive step: Assume ri (j + 1) = 2n−(j+1).

Then ri (j) = ri (j + 1)+ r2(j + 1)

= 2n−(j+1) + 2n−(j+1)

= 2n−(j+1)+1

= 2n− j . (claim)

Therefore, f1[1] alone is referenced 2n−1 times!

So top down isn�t a good way to compute fi [j].

Observation: fi [j] depends only on f1[j − 1] and f2[j − 1] (for j ≥ 2).

So compute in order of increasing j .

Lecture Notes for Chapter 15: Dynamic Programming 15-5

FASTEST-WAY(a, t, e, x, n)

f1[1] ← e1 + a1,1

f2[1] ← e2 + a2,1

for j ← 2 to n
do if f1[j − 1]+ a1, j ≤ f2[j − 1]+ t2, j−1 + a1, j

then f1[j] ← f1[j − 1]+ a1, j

l1[j] ← 1
else f1[j] ← f2[j − 1]+ t2, j−1 + a1, j

l1[j] ← 2
if f2[j − 1]+ a2, j ≤ f1[j − 1]+ t1, j−1 + a2, j

then f2[j] ← f2[j − 1]+ a2, j

l2[j] ← 2
else f2[j] ← f1[j − 1]+ t1, j−1 + a2, j

l2[j] ← 1
if f1[n]+ x1 ≤ f2[n]+ x2

then f ∗ = f1[n]+ x1

l∗ = 1
else f ∗ = f2[n]+ x2

l∗ = 2

Go through example.

Constructing an optimal solution

PRINT-STATIONS(l, n)

i ← l∗
print �line � i �, station � n
for j ← n downto 2

do i ← li [j]
print �line � i �, station � j − 1

Go through example.

Time = �(n)

Longest common subsequence

Problem: Given 2 sequences, X = 〈x1, . . . , xm〉 and Y = 〈y1, . . . , yn〉. Find
a subsequence common to both whose length is longest. A subsequence doesn�t
have to be consecutive, but it has to be in order.

[To come up with examples of longest common subsequences, search the dictio-
nary for all words that contain the word you are looking for as a subsequence. On
a UNIX system, for example, to Þnd all the words with pine as a subsequence,
use the command grep ’.*p.*i.*n.*e.*’ dict, where dict is your lo-
cal dictionary. Then check if that word is actually a longest common subsequence.
Working C code for Þnding a longest commmon subsequence of two strings ap-
pears at http://www.cs.dartmouth.edu/�thc/code/lcs.c]

15-6 Lecture Notes for Chapter 15: Dynamic Programming

Examples: [The examples are of different types of trees.]

h e r o i c a l l y

s p r i n g t i m e

p i o n e e r

h o r s e b a c k

s n o w f l a k e

m a e l s t r o m

b e c a l m s c h o l a r l y

Brute-force algorithm:

For every subsequence of X , check whether it�s a subsequence of Y .

Time: �(n2m).

• 2m subsequences of X to check.
• Each subsequence takes �(n) time to check: scan Y for Þrst letter, from there

scan for second, and so on.

Optimal substructure

Notation:

Xi = preÞx 〈x1, . . . , xi 〉
Yi = preÞx 〈y1, . . . , yi〉

Theorem
Let Z = 〈z1, . . . , zk〉 be any LCS of X and Y .

1. If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1.

2. If xm �= yn, then zk �= xm ⇒ Z is an LCS of Xm−1 and Y .

3. If xm �= yn, then zk �= yn ⇒ Z is an LCS of X and Yn−1.

Proof

1. First show that zk = xm = yn. Suppose not. Then make a subsequence Z′ =
〈z1, . . . , zk, xm〉. It�s a common subsequence of X and Y and has length k + 1
⇒ Z ′ is a longer common subsequence than Z ⇒ contradicts Z being an LCS.

Now show Zk−1 is an LCS of Xm−1 and Yn−1. Clearly, it�s a common subse-
quence. Now suppose there exists a common subsequence W of Xm−1 and Yn−1

that�s longer than Zk−1 ⇒ length of W ≥ k. Make subsequence W′ by append-
ing xm to W . W ′ is common subsequence of X and Y , has length ≥ k + 1 ⇒
contradicts Z being an LCS.

2. If zk �= xm , then Z is a common subsequence of Xm−1 and Y . Suppose there
exists a subsequence W of Xm−1 and Y with length > k. Then W is a common
subsequence of X and Y ⇒ contradicts Z being an LCS.

Lecture Notes for Chapter 15: Dynamic Programming 15-7

3. Symmetric to 2. (theorem)

Therefore, an LCS of two sequences contains as a preÞx an LCS of preÞxes of the
sequences.

Recursive formulation

DeÞne c[i, j] = length of LCS of Xi and Yj . We want c[m, n].

c[i, j] =
⎧⎨⎩0 if i = 0 or j = 0 ,

c[i − 1, j − 1]+ 1 if i, j > 0 and xi = y j ,

max(c[i − 1, j], c[i, j − 1]) if i, j > 0 and xi �= y j .

Again, we could write a recursive algorithm based on this formulation.

Try with bozo, bat.

0,3 1,2 1,2 2,1 1,2 2,1 2,1 3,0

1,3 2,2 2,2 3,1 2,2 3,1 3,1 4,0

2,3 3,2 3,2 4,1

3,3 3,3

4,3

• Lots of repeated subproblems.
• Instead of recomputing, store in a table.

Compute length of optimal solution

LCS-LENGTH(X, Y, m, n)

for i ← 1 to m
do c[i, 0] ← 0

for j ← 0 to n
do c[0, j] ← 0

for i ← 1 to m
do for j ← 1 to n

do if xi = y j

then c[i, j] ← c[i − 1, j − 1]+ 1
b[i, j] ← �↖�

else if c[i − 1, j] ≥ c[i, j − 1]
then c[i, j] ← c[i − 1, j]

b[i, j] ← �↑�
else c[i, j] ← c[i, j − 1]

b[i, j] ← �←�
return c and b

15-8 Lecture Notes for Chapter 15: Dynamic Programming

PRINT-LCS(b, X, i, j)

if i = 0 or j = 0
then return

if b[i, j] = �↖�
then PRINT-LCS(b, X, i − 1, j − 1)

print xi

elseif b[i, j] = �↑�
then PRINT-LCS(b, X, i − 1, j)

else PRINT-LCS(b, X, i, j − 1)

• Initial call is PRINT-LCS(b, X, m, n).
• b[i, j] points to table entry whose subproblem we used in solving LCS of Xi

and Yj .
• When b[i, j] = ↖, we have extended LCS by one character. So longest com-

mon subsequence = entries with ↖ in them.

Demonstration: show only c[i, j]:

43322111110

43322111110

33322111110

32222111110

32222111110

22222111110

11111111000

00000000000

00000000000

g

n

i

k

n

a

p

s

noitatupma

niap

Time: �(mn)

Optimal binary search trees

[Also new in the second edition.]

• Given sequence K = 〈k1, k2, . . . , kn〉 of n distinct keys, sorted (k1 < k2 <

· · · < kn).
• Want to build a binary search tree from the keys.
• For ki , have probability pi that a search is for ki .
• Want BST with minimum expected search cost.

Lecture Notes for Chapter 15: Dynamic Programming 15-9

• Actual cost = # of items examined.

For key ki , cost = depthT (ki)+ 1, where depthT (ki) = depth of ki in BST T .

E [search cost in T]

=
n∑

i=1

(depthT (ki)+ 1) · pi

=
n∑

i=1

depthT (ki) · pi +
n∑

i=1

pi

= 1+
n∑

i=1

depthT (ki) · pi (since probabilities sum to 1) (∗)

[Similar to optimal BST problem in the book, but simpliÞed here: we assume that
all searches are successful. Book has probabilities of searches between keys in
tree.]

i 1 2 3 4 5
pi .25 .2 .05 .2 .3

Example:

k2

k1 k4

k3 k5

i depthT (ki) depthT (ki) · pi

1 1 .25
2 0 0
3 2 .1
4 1 .2
5 2 .6

1.15

Therefore, E [search cost] = 2.15.

15-10 Lecture Notes for Chapter 15: Dynamic Programming

k2

k1 k5

k4

k3

i depthT (ki) depthT (ki) · pi

1 1 .25
2 0 0
3 3 .15
4 2 .4
5 1 .3

1.10

Therefore, E [search cost] = 2.10, which turns out to be optimal.

Observations:

• Optimal BST might not have smallest height.
• Optimal BST might not have highest-probability key at root.

Build by exhaustive checking?

• Construct each n-node BST.
• For each, put in keys.
• Then compute expected search cost.
• But there are �(4n/n3/2) different BSTs with n nodes.

Optimal substructure

Consider any subtree of a BST. It contains keys in a contiguous range ki , . . . , k j

for some 1 ≤ i ≤ j ≤ n.

T

T'

If T is an optimal BST and T contains subtree T ′ with keys ki , . . . , k j , then T ′
must be an optimal BST for keys ki , . . . , k j .

Proof Cut and paste.

Use optimal substructure to construct an optimal solution to the problem from op-
timal solutions to subproblems:

Lecture Notes for Chapter 15: Dynamic Programming 15-11

• Given keys ki , . . . , k j (the problem).
• One of them, kr , where i ≤ r ≤ j , must be the root.
• Left subtree of kr contains ki , . . . , kr−1.
• Right subtree of kr contains kr+1, . . . , k j .

kr

ki kr�1 kr+1 kj

• If

• we examine all candidate roots kr , for i ≤ r ≤ j , and
• we determine all optimal BSTs containing ki , . . . , kr−1 and containing

kr+1, . . . , k j ,

then we�re guaranteed to Þnd an optimal BST for ki , . . . , k j .

Recursive solution

Subproblem domain:

• Find optimal BST for ki , . . . , k j , where i ≥ 1, j ≤ n, j ≥ i − 1.
• When j = i − 1, the tree is empty.

DeÞne e[i, j] = expected search cost of optimal BST for ki , . . . , k j .

If j = i − 1, then e[i, j] = 0.

If j ≥ i ,

• Select a root kr , for some i ≤ r ≤ j .
• Make an optimal BST with ki , . . . , kr−1 as the left subtree.
• Make an optimal BST with kr+1, . . . , k j as the right subtree.
• Note: when r = i , left subtree is ki , . . . , ki−1; when r = j , right subtree is

k j+1, . . . , k j .

When a subtree becomes a subtree of a node:

• Depth of every node in subtree goes up by 1.
• Expected search cost increases by

w(i, j) =
j∑

l=i

pl (refer to equation (∗)) .

If kr is the root of an optimal BST for ki , . . . , k j :

e[i, j] = pr + (e[i, r − 1]+ w(i, r − 1))+ (e[r + 1, j]+ w(r + 1, j)) .

15-12 Lecture Notes for Chapter 15: Dynamic Programming

But w(i, j) = w(i, r − 1)+ pr + w(r + 1, j).

Therefore, e[i, j] = e[i, r − 1]+ e[r + 1, j]+ w(i, j).

This equation assumes that we already know which key is kr .

We don�t.

Try all candidates, and pick the best one:

e[i, j] =
{

0 if j = i − 1 ,

min
i≤r≤ j

{e[i, r − 1]+ e[r + 1, j]+ w(i, j)} if i ≤ j .

Could write a recursive algorithm. . .

Computing an optimal solution

As �usual,� we�ll store the values in a table:

e[1 . . n + 1︸ ︷︷ ︸
can store

e[n + 1, n]

, 0 . . n︸ ︷︷ ︸
can store
e[1, 0]

]

• Will use only entries e[i, j], where j ≥ i − 1.
• Will also compute

root[i, j] = root of subtree with keys ki , . . . , k j , for 1 ≤ i ≤ j ≤ n .

One other table. . . don�t recompute w(i, j) from scratch every time we need it.
(Would take �(j − i) additions.)

Instead:

• Table w[1 . . n + 1, 0 . . n]
• w[i, i − 1] = 0 for 1 ≤ i ≤ n
• w[i, j] = w[i, j − 1]+ pj for 1 ≤ i ≤ j ≤ n

Can compute all �(n2) values in O(1) time each.

OPTIMAL-BST(p, q, n)

for i ← 1 to n + 1
do e[i, i − 1] ← 0

w[i, i − 1] ← 0
for l ← 1 to n

do for i ← 1 to n − l + 1
do j ← i + l − 1

e[i, j] ←∞
w[i, j] ← w[i, j − 1]+ pj

for r ← i to j
do t ← e[i, r − 1]+ e[r + 1, j]+ w[i, j]
if t < e[i, j]
then e[i, j] ← t

root[i, j] ← r
return e and root

Lecture Notes for Chapter 15: Dynamic Programming 15-13

First for loop initializes e, w entries for subtrees with 0 keys.
Main for loop:
• Iteration for l works on subtrees with l keys.
• Idea: compute in order of subtree sizes, smaller (1 key) to larger (n keys).

For example at beginning:

e

1

2

3

4

5

6

0 1 2 3 4 5

i

j

0

0

0

0

0

0

.25 .65 .8 1.25 2.10

.2 .3 .75 1.35

.3

.2

.05 .3 .85

.7pi

w

1

2

3

4

5

6

0 1 2 3 4 5

i

j

0

0

0

0

0

0

.25 .45 .5 .7 1.0

.2 .25 .45 .75

.3

.2

.05 .25 .55

.5

root

1

2

3

4

5

1 2 3 4 5

i

j

1

2

3

4

5

1 1 2 2

2 2 4

5

4 5

Time: O(n3): for loops nested 3 deep, each loop index takes on ≤ n values. Can
also show �(n3). Therefore, �(n3).

Construct an optimal solution

CONSTRUCT-OPTIMAL-BST(root)

r ← root[1, n]
print �k�r �is the root�
CONSTRUCT-OPT-SUBTREE(1, r − 1, r, �left�, root)
CONSTRUCT-OPT-SUBTREE(r + 1, n, r, �right�, root)

CONSTRUCT-OPT-SUBTREE(i, j, r, dir, root)

if i ≤ j
then t ← root[i, j]

print �k�t �is� dir �child of k�r

CONSTRUCT-OPT-SUBTREE(i, t − 1, t, �left�, root)
CONSTRUCT-OPT-SUBTREE(t + 1, j, t, �right�, root)

15-14 Lecture Notes for Chapter 15: Dynamic Programming

Elements of dynamic programming

Mentioned already:

• optimal substructure
• overlapping subproblems

Optimal substructure

• Show that a solution to a problem consists of making a choice, which leaves
one or subproblems to solve.

• Suppose that you are given this last choice that leads to an optimal solution. [We
Þnd that students often have trouble understanding the relationship between
optimal substructure and determining which choice is made in an optimal so-
lution. One way that helps them understand optimal substructure is to imagine
that �God� tells you what was the last choice made in an optimal solution.]

• Given this choice, determine which subproblems arise and how to characterize
the resulting space of subproblems.

• Show that the solutions to the subproblems used within the optimal solution
must themselves be optimal. Usually use cut-and-paste:

• Suppose that one of the subproblem solutions is not optimal.
• Cut it out.
• Paste in an optimal solution.
• Get a better solution to the original problem. Contradicts optimality of prob-

lem solution.

That was optimal substructure.

Need to ensure that you consider a wide enough range of choices and subproblems
that you get them all. [�God� is too busy to tell you what that last choice really
was.] Try all the choices, solve all the subproblems resulting from each choice,
and pick the choice whose solution, along with subproblem solutions, is best.

How to characterize the space of subproblems?

• Keep the space as simple as possible.
• Expand it as necessary.

Examples:

Assembly-line scheduling
• Space of subproblems was fastest way from factory entry through stations

S1, j and S2, j .
• No need to try a more general space of subproblems.

Optimal binary search trees
• Suppose we had tried to constrain space of subproblems to subtrees with

keys k1, k2, . . . , k j .

Lecture Notes for Chapter 15: Dynamic Programming 15-15

• An optimal BST would have root kr , for some 1 ≤ r ≤ j .
• Get subproblems k1, . . . , kr−1 and kr+1, . . . , k j .
• Unless we could guarantee that r = j , so that subproblem with kr+1, . . . , k j

is empty, then this subproblem is not of the form k1, k2, . . . , k j .
• Thus, needed to allow the subproblems to vary at �both ends,� i.e., allow

both i and j to vary.

Optimal substructure varies across problem domains:

1. How many subproblems are used in an optimal solution.

2. How many choices in determining which subproblem(s) to use.

• Assembly-line scheduling:

• 1 subproblem
• 2 choices (for Si, j use either S1, j−1 or S2, j−1)

• Longest common subsequence:

• 1 subproblem
• Either

• 1 choice (if xi = y j , LCS of Xi−1 and Yj−1), or
• 2 choices (if xi �= y j , LCS of Xi−1 and Y , and LCS of X and Yj−1)

• Optimal binary search tree:

• 2 subproblems (ki , . . . , kr−1 and kr+1, . . . , k j)
• j − i + 1 choices for kr in ki , . . . , k j . Once we determine optimal solutions

to subproblems, we choose from among the j − i + 1 candidates for kr .

Informally, running time depends on (# of subproblems overall) × (# of choices).

• Assembly-line scheduling: �(n) subproblems, 2 choices for each
⇒ �(n) running time.

• Longest common subsequence: �(mn) subproblems, ≤ 2 choices for each
⇒ �(mn) running time.

• Optimal binary search tree: �(n2) subproblems, O(n) choices for each
⇒ O(n3) running time.

Dynamic programming uses optimal substructure bottom up.

• First Þnd optimal solutions to subproblems.
• Then choose which to use in optimal solution to the problem.

When we look at greedy algorithms, we�ll see that they work top down: Þrst make
a choice that looks best, then solve the resulting subproblem.

Don�t be fooled into thinking optimal substructure applies to all optimization prob-
lems. It doesn�t.

Here are two problems that look similar. In both, we�re given an unweighted,
directed graph G = (V, E).

15-16 Lecture Notes for Chapter 15: Dynamic Programming

• V is a set of vertices.
• E is a set of edges.

And we ask about Þnding a path (sequence of connected edges) from vertex u to
vertex v.

• Shortest path: Þnd path u � v with fewest edges. Must be simple (no cycles),
since removing a cycle from a path gives a path with fewer edges.

• Longest simple path: Þnd simple path u � v with most edges. If didn�t require
simple, could repeatedly traverse a cycle to make an arbitrarily long path.

Shortest path has optimal substructure.

u vw

p1 p2

p

• Suppose p is shortest path u � v.
• Let w be any vertex on p.
• Let p1 be the portion of p, u � w.
• Then p1 is a shortest path u � w.

Proof Suppose there exists a shorter path p′1, u � w. Cut out p1, replace it

with p′1, get path u
p′1
� w

p2
� v with fewer edges than p.

Therefore, can Þnd shortest path u � v by considering all intermediate vertices w,
then Þnding shortest paths u � w and w � v.

Same argument applies to p2.

Does longest path have optimal substructure?

• It seems like it should.
• It does not.

q r

s t

Consider q → r → t = longest path q � t . Are its subpaths longest paths?

No!

• Subpath q � r is q → r .
• Longest simple path q � r is q → s → t → r .
• Subpath r � t is r → t .
• Longest simple path r � t is r → q → s → t .

Lecture Notes for Chapter 15: Dynamic Programming 15-17

Not only isn�t there optimal substructure, but we can�t even assemble a legal solu-
tion from solutions to subproblems.

Combine longest simple paths:

q → s → t → r → q → s → t

Not simple!

In fact, this problem is NP-complete (so it probably has no optimal substructure to
Þnd.)

What�s the big difference between shortest path and longest path?

• Shortest path has independent subproblems.
• Solution to one subproblem does not affect solution to another subproblem of

the same problem.
• Longest simple path: subproblems are not independent.
• Consider subproblems of longest simple paths q � r and r � t .
• Longest simple path q � r uses s and t .
• Cannot use s and t to solve longest simple path r � t , since if we do, the path

isn�t simple.
• But we have to use t to Þnd longest simple path r � t!
• Using resources (vertices) to solve one subproblem renders them unavailable to

solve the other subproblem.

[For shortest paths, if we look at a shortest path u
p1
� w

p2
� v, no vertex other

than w can appear in p1 and p2. Otherwise, we have a cycle.]

Independent subproblems in our examples:

• Assembly line and longest common subsequence

• 1 subproblem ⇒ automatically independent.

• Optimal binary search tree

• ki , . . . , kr−1 and kr+1, . . . , k j ⇒ independent.

Overlapping subproblems

These occur when a recursive algorithm revisits the same problem over and over.

Good divide-and-conquer algorithms usually generate a brand new problem at each
stage of recursion.

Example: merge sort

1..8

1..4 5..8

1..2 3..4 5..6 7..8

1..1 2..2 3..3 4..4 5..5 6..6 7..7 8..8

15-18 Lecture Notes for Chapter 15: Dynamic Programming

Won�t go through exercise of showing repeated subproblems.

Book has a good example for matrix-chain multiplication.

Alternative approach: memoization

• �Store, don�t recompute.�
• Make a table indexed by subproblem.
• When solving a subproblem:

• Lookup in table.
• If answer is there, use it.
• Else, compute answer, then store it.

• In dynamic programming, we go one step further. We determine in what order
we�d want to access the table, and Þll it in that way.

Solutions for Chapter 15:
Dynamic Programming

Solution to Exercise 15.1-5

If l1[j] = 2, then the fastest way to go through station j on line 1 is by changing
lines from station j − 1 on line 2. This means that f2[j − 1] + t1, j−1 + a1, j <

f1[j − 1]+ a1, j . Dropping a1, j from both sides of the equation yields f2[j − 1]+
t1, j−1 < f1[j − 1].

If l2[j] = 1, then the fastest way to go through station j on line 2 is by changing
lines from station j − 1 on line 1. This means that f1[j − 1] + t2, j−1 + a2, j <

f2[j − 1]+ a2, j . Dropping a2, j from both sides of the equation yields f1[j − 1]+
t2, j−1 < f2[j − 1].

We can derive a contradiction by combining the two equations as follows:
f2[j − 1] + t1, j−1 < f1[j − 1] and f1[j − 1] + t2, j−1 < f2[j − 1] yields
f2[j − 1] + t1, j−1 + t2, j−1 < f2[j − 1]. Since all transfer costs are nonnega-
tive, the resulting inequality cannot hold. We conclude that we cannot have the
situation where l1[j] = 2 and l2[j] = 1.

Solution to Exercise 15.2-4

Each time the l-loop executes, the i-loop executes n − l + 1 times. Each time the
i-loop executes, the k-loop executes j − i = l − 1 times, each time referencing
m twice. Thus the total number of times that an entry of m is referenced while
computing other entries is

∑n
l=2(n − l + 1)(l − 1)2. Thus,

n∑
i=1

n∑
j=i

R(i, j) =
n∑

l=2

(n − l + 1)(l − 1)2

= 2
n−1∑
l=1

(n − l)l

= 2
n−1∑
l=1

nl − 2
n−1∑
l=1

l2

= 2
n(n − 1)n

2
− 2

(n − 1)n(2n − 1)

6

15-20 Solutions for Chapter 15: Dynamic Programming

= n3 − n2 − 2n3 − 3n2 + n

3

= n3 − n

3
.

Solution to Exercise 15.3-1

Running RECURSIVE-MATRIX-CHAIN is asymptotically more efÞcient than enu-
merating all the ways of parenthesizing the product and computing the number of
multiplications for each.

Consider the treatment of subproblems by the two approaches.

• For each possible place to split the matrix chain, the enumeration approach
Þnds all ways to parenthesize the left half, Þnds all ways to parenthesize the
right half, and looks at all possible combinations of the left half with the right
half. The amount of work to look at each combination of left- and right-half
subproblem results is thus the product of the number of ways to do the left half
and the number of ways to do the right half.

• For each possible place to split the matrix chain, RECURSIVE-MATRIX-CHAIN

Þnds the best way to parenthesize the left half, Þnds the best way to parenthesize
the right half, and combines just those two results. Thus the amount of work to
combine the left- and right-half subproblem results is O(1).

Section 15.2 argued that the running time for enumeration is �(4n/n3/2). We will
show that the running time for RECURSIVE-MATRIX-CHAIN is O(n3n−1).

To get an upper bound on the running time of RECURSIVE-MATRIX-CHAIN, we�ll
use the same approach used in Section 15.2 to get a lower bound: Derive a recur-
rence of the form T (n) ≤ . . . and solve it by substitution. For the lower-bound
recurrence, the book assumed that the execution of lines 1�2 and 6�7 each take at
least unit time. For the upper-bound recurrence, we�ll assume those pairs of lines
each take at most constant time c. Thus, we have the recurrence

T (n) ≤

⎧⎪⎨⎪⎩
c if n = 1 ,

c +
n−1∑
k=1

(T (k)+ T (n − k)+ c) if n ≥ 2 .

This is just like the book�s ≥ recurrence except that it has c instead of 1, and so we
can be rewrite it as

T (n) ≤ 2
n−1∑
i=1

T (i)+ cn .

We shall prove that T (n) = O(n3n−1) using the substitution method. (Note: Any
upper bound on T (n) that is o(4n/n3/2) will sufÞce. You might prefer to prove one
that is easier to think up, such as T (n) = O(3.5n).) SpeciÞcally, we shall show
that T (n) ≤ cn3n−1 for all n ≥ 1. The basis is easy, since T (1) ≤ c = c · 1 · 31−1.

Solutions for Chapter 15: Dynamic Programming 15-21

Inductively, for n ≥ 2 we have

T (n) ≤ 2
n−1∑
i=1

T (i)+ cn

≤ 2
n−1∑
i=1

ci3i−1 + cn

≤ c ·
(

2
n−1∑
i=1

i3i−1 + n

)

= c ·
(

2 ·
(

n3n−1

3− 1
+ 1− 3n

(3− 1)2

)
+ n

)
(see below)

= cn3n−1 + c ·
(

1− 3n

2
+ n

)
= cn3n−1 + c

2
(2n + 1− 3n)

≤ cn3n−1 for all c > 0, n ≥ 1 .

Running RECURSIVE-MATRIX-CHAIN takes O(n3n−1) time, and enumerating all
parenthesizations takes �(4n/n3/2) time, and so RECURSIVE-MATRIX-CHAIN is
more efÞcient than enumeration.

Note: The above substitution uses the fact that
n−1∑
i=1

i xi−1 = nxn−1

x − 1
+ 1− xn

(x − 1)2
.

This equation can be derived from equation (A.5) by taking the derivative. Let

f (x) =
n−1∑
i=1

xi = xn − 1

x − 1
− 1 .

Then
n−1∑
i=1

i xi−1 = f ′(x) = nxn−1

x − 1
+ 1− xn

(x − 1)2
.

Solution to Exercise 15.4-4

When computing a particular row of the c table, no rows before the previous row
are needed. Thus only two rows�2 · length[Y] entries�need to be kept in memory
at a time. (Note: Each row of c actually has length[Y] + 1 entries, but we don�t
need to store the column of 0�s�instead we can make the program �know� that
those entries are 0.) With this idea, we need only 2 ·min(m, n) entries if we always
call LCS-LENGTH with the shorter sequence as the Y argument.

We can thus do away with the c table as follows:

• Use two arrays of length min(m, n), previous-row and current-row, to hold the
appropriate rows of c.

• Initialize previous-row to all 0 and compute current-row from left to right.

15-22 Solutions for Chapter 15: Dynamic Programming

• When current-row is Þlled, if there are still more rows to compute, copy
current-row into previous-row and compute the new current-row.

Actually only a little more than one row�s worth of c entries�min(m, n) + 1 en-
tries�are needed during the computation. The only entries needed in the table
when it is time to compute c[i, j] are c[i, k] for k ≤ j − 1 (i.e., earlier entries in
the current row, which will be needed to compute the next row); and c[i − 1, k] for
k ≥ j − 1 (i.e., entries in the previous row that are still needed to compute the rest
of the current row). This is one entry for each k from 1 to min(m, n) except that
there are two entries with k = j − 1, hence the additional entry needed besides the
one row�s worth of entries.

We can thus do away with the c table as follows:

• Use an array a of length min(m, n)+ 1 to hold the appropriate entries of c. At
the time c[i, j] is to be computed, a will hold the following entries:

• a[k] = c[i, k] for 1 ≤ k < j − 1 (i.e., earlier entries in the current �row�),
• a[k] = c[i − 1, k] for k ≥ j − 1 (i.e., entries in the previous �row�),
• a[0] = c[i, j − 1] (i.e., the previous entry computed, which couldn�t be put

into the �right� place in a without erasing the still-needed c[i − 1, j − 1]).

• Initialize a to all 0 and compute the entries from left to right.

• Note that the 3 values needed to compute c[i, j] for j > 1 are in a[0] =
c[i, j − 1], a[j − 1] = c[i − 1, j − 1], and a[j] = c[i − 1, j].

• When c[i, j] has been computed, move a[0] (c[i, j − 1]) to its �correct�
place, a[j − 1], and put c[i, j] in a[0].

Solution to Problem 15-1

Taking the book�s hint, we sort the points by x-coordinate, left to right, in O(n lg n)

time. Let the sorted points be, left to right, 〈p1, p2, p3, . . . , pn〉. Therefore, p1 is
the leftmost point, and pn is the rightmost.

We deÞne as our subproblems paths of the following form, which we call bitonic
paths. A bitonic path Pi, j , where i ≤ j , includes all points p1, p2, . . . , p j ; it
starts at some point pi , goes strictly left to point p1, and then goes strictly right to
point pj . By �going strictly left,� we mean that each point in the path has a lower x-
coordinate than the previous point. Looked at another way, the indices of the sorted
points form a strictly decreasing sequence. Likewise, �going strictly right� means
that the indices of the sorted points form a strictly increasing sequence. Moreover,
Pi, j contains all the points p1, p2, p3, . . . , p j . Note that pj is the rightmost point
in Pi, j and is on the rightgoing subpath. The leftgoing subpath may be degenerate,
consisting of just p1.

Let us denote the euclidean distance between any two points pi and pj by |pi p j |.
And let us denote by b[i, j], for 1 ≤ i ≤ j ≤ n, the length of the shortest bitonic
path Pi, j . Since the leftgoing subpath may be degenerate, we can easily compute
all values b[1, j]. The only value of b[i, i] that we will need is b[n, n], which is

Solutions for Chapter 15: Dynamic Programming 15-23

the length of the shortest bitonic tour. We have the following formulation of b[i, j]
for 1 ≤ i ≤ j ≤ n:

b[1, 2] = |p1 p2| ,

b[i, j] = b[i, j − 1]+ |p j−1 p j | for i < j − 1 ,

b[j − 1, j] = min
1≤k< j−1

{b[k, j − 1]+ |pk p j |} .

Why are these formulas correct? Any bitonic path ending at p2 has p2 as its right-
most point, so it consists only of p1 and p2. Its length, therefore, is |p1 p2|.
Now consider a shortest bitonic path Pi, j . The point pj−1 is somewhere on this
path. If it is on the rightgoing subpath, then it immediately preceeds pj on this
subpath. Otherwise, it is on the leftgoing subpath, and it must be the rightmost
point on this subpath, so i = j − 1. In the Þrst case, the subpath from pi to pj−1

must be a shortest bitonic path Pi, j−1, for otherwise we could use a cut-and-paste
argument to come up with a shorter bitonic path than Pi, j . (This is part of our opti-
mal substructure.) The length of Pi, j , therefore, is given by b[i, j − 1]+|p j−1 p j |.
In the second case, pj has an immediate predecessor pk , where k < j − 1, on
the rightgoing subpath. Optimal substructure again applies: the subpath from pk
to pj−1 must be a shortest bitonic path Pk, j−1, for otherwise we could use cut-and-
paste to come up with a shorter bitonic path than Pi, j . (We have implicitly relied
on paths having the same length regardless of which direction we traverse them.)
The length of Pi, j , therefore, is given by min1≤k≤ j−1 {b[k, j − 1]+ |pk p j |}.
We need to compute b[n, n]. In an optimal bitonic tour, one of the points adjacent
to pn must be pn−1, and so we have

b[n, n] = b[n − 1, n]+ |pn−1 pn| .

To reconstruct the points on the shortest bitonic tour, we deÞne r[i, j] to be the
immediate predecessor of pj on the shortest bitonic path Pi, j . The pseudocode
below shows how we compute b[i, j] and r[i, j]:

EUCLIDEAN-TSP(p)

sort the points so that 〈p1, p2, p3, . . . , pn〉 are in order of increasing x-coordinate
b[1, 2] ← |p1 p2|
for j ← 3 to n

do for i ← 1 to j − 2
do b[i, j] ← b[i, j − 1]+ |p j−1 p j |

r[i, j] ← j − 1
b[j − 1, j] ←∞
for k ← 1 to j − 2

do q ← b[k, j − 1]+ |pk p j |
if q < b[j − 1, j]
then b[j − 1, j] ← q

r[j − 1, j] ← k
b[n, n] ← b[n − 1, n]+ |pn−1 pn|
return b and r

We print out the tour we found by starting at pn , then a leftgoing subpath that
includes pn−1, from right to left, until we hit p1. Then we print right-to-left the
remaining subpath, which does not include pn−1. For the example in Figure 15.9(b)

15-24 Solutions for Chapter 15: Dynamic Programming

on page 365, we wish to print the sequence p7, p6, p4, p3, p1, p2, p5. Our code is
recursive. The right-to-left subpath is printed as we go deeper into the recursion,
and the left-to-right subpath is printed as we back out.

PRINT-TOUR(r, n)

print pn

print pn−1

k ← r[n − 1, n]
PRINT-PATH(r, k, n − 1)
print pk

PRINT-PATH(r, i, j)

if i < j
then k ← r[i, j]

print pk

if k > 1
then PRINT-PATH(r, i, k)

else k ← r[j, i]
if k > 1
then PRINT-PATH(r, k, j)

print pk

The relative values of the parameters i and j in each call of PRINT-PATH indicate
which subpath we�re working on. If i < j , we�re on the right-to-left subpath, and
if i > j , we�re on the left-to-right subpath.

The time to run EUCLIDEAN-TSP is O(n2) since the outer loop on j iterates n−2
times and the inner loops on i and k each run at most n− 2 times. The sorting step
at the beginning takes O(n lg n) time, which the loop times dominate. The time to
run PRINT-TOUR is O(n), since each point is printed just once.

Solution to Problem 15-2

Note: we will assume that no word is longer than will Þt into a line, i.e., li ≤ M
for all i .

First, we�ll make some deÞnitions so that we can state the problem more uniformly.
Special cases about the last line and worries about whether a sequence of words Þts
in a line will be handled in these deÞnitions, so that we can forget about them when
framing our overall strategy.

• DeÞne extras[i, j] = M− j+i−∑ j
k=i lk to be the number of extra spaces at the

end of a line containing words i through j . Note that extras may be negative.
• Now deÞne the cost of including a line containing words i through j in the sum

we want to minimize:

lc[i, j] =
⎧⎨⎩
∞ if extras[i, j] < 0 (i.e., words i, . . . , j don�t Þt) ,

0 if j = n and extras[i, j] ≥ 0 (last line costs 0) ,

(extras[i, j])3 otherwise .

Solutions for Chapter 15: Dynamic Programming 15-25

By making the line cost inÞnite when the words don�t Þt on it, we prevent such
an arrangement from being part of a minimal sum, and by making the cost 0 for
the last line (if the words Þt), we prevent the arrangement of the last line from
inßuencing the sum being minimized.

We want to minimize the sum of lc over all lines of the paragraph.

Our subproblems are how to optimally arrange words 1, . . . , j , where j =
1, . . . , n.

Consider an optimal arrangement of words 1, . . . , j . Suppose we know that the
last line, which ends in word j , begins with word i . The preceding lines, therefore,
contain words 1, . . . , i − 1. In fact, they must contain an optimal arrangement of
words 1, . . . , i − 1. (Insert your favorite cut-and-paste argument here.)

Let c[j] be the cost of an optimal arrangement of words 1, . . . , j . If we know that
the last line contains words i, . . . , j , then c[j] = c[i−1]+ lc[i, j]. As a base case,
when we�re computing c[1], we need c[0]. If we set c[0] = 0, then c[1] = lc[1, 1],
which is what we want.

But of course we have to Þgure out which word begins the last line for the sub-
problem of words 1, . . . , j . So we try all possibilities for word i , and we pick the
one that gives the lowest cost. Here, i ranges from 1 to j . Thus, we can deÞne c[j]
recursively by

c[j] =
{

0 if j = 0 ,

min
1≤i≤ j

(c[i − 1]+ lc[i, j]) if j > 0 .

Note that the way we deÞned lc ensures that

• all choices made will Þt on the line (since an arrangement with lc = ∞ cannot
be chosen as the minimum), and

• the cost of putting words i, . . . , j on the last line will not be 0 unless this really
is the last line of the paragraph (j = n) or words i . . . j Þll the entire line.

We can compute a table of c values from left to right, since each value depends
only on earlier values.

To keep track of what words go on what lines, we can keep a parallel p table that
points to where each c value came from. When c[j] is computed, if c[j] is based
on the value of c[k − 1], set p[j] = k. Then after c[n] is computed, we can trace
the pointers to see where to break the lines. The last line starts at word p[n] and
goes through word n. The previous line starts at word p[p[n]] and goes through
word p[n]− 1, etc.

In pseudocode, here�s how we construct the tables:

15-26 Solutions for Chapter 15: Dynamic Programming

PRINT-NEATLY(l, n, M)

� Compute extras[i, j] for 1 ≤ i ≤ j ≤ n.
for i ← 1 to n

do extras[i, i] ← M − li
for j ← i + 1 to n

do extras[i, j] ← extras[i, j − 1]− lj − 1
� Compute lc[i, j] for 1 ≤ i ≤ j ≤ n.
for i ← 1 to n

do for j ← i to n
do if extras[i, j] < 0

then lc[i, j] ←∞
elseif j = n and extras[i, j] ≥ 0
then lc[i, j] ← 0

else lc[i, j] ← (extras[i, j])3

� Compute c[j] and p[j] for 1 ≤ j ≤ n.
c[0] ← 0
for j ← 1 to n

do c[j] ←∞
for i ← 1 to j

do if c[i − 1]+ lc[i, j] < c[j]
then c[j] ← c[i − 1]+ lc[i, j]

p[j] ← i
return c and p

Quite clearly, both the time and space are �(n2).

In fact, we can do a bit better: we can get both the time and space down to �(nM).
The key observation is that at most �M/2� words can Þt on a line. (Each word is
at least one character long, and there�s a space between words.) Since a line with
words i, . . . , j contains j − i + 1 words, if j − i + 1 > �M/2� then we know
that lc[i, j] = ∞. We need only compute and store extras[i, j] and lc[i, j] for
j − i + 1 ≤ �M/2�. And the inner for loop header in the computation of c[j]
and p[j] can run from max(1, j −�M/2� + 1) to j .

We can reduce the space even further to �(n). We do so by not storing the lc
and extras tables, and instead computing the value of lc[i, j] as needed in the last
loop. The idea is that we could compute lc[i, j] in O(1) time if we knew the
value of extras[i, j]. And if we scan for the minimum value in descending order
of i , we can compute that as extras[i, j] = extras[i + 1, j] − li − 1. (Initially,
extras[j, j] = M − l j .) This improvement reduces the space to �(n), since now
the only tables we store are c and p.

Here�s how we print which words are on which line. The printed output of
GIVE-LINES(p, j) is a sequence of triples (k, i, j), indicating that words i, . . . , j
are printed on line k. The return value is the line number k.

Solutions for Chapter 15: Dynamic Programming 15-27

GIVE-LINES(p, j)

i ← p[j]
if i = 1
then k ← 1
else k ← GIVE-LINES(p, i − 1)+ 1

print (k, i, j)
return k

The initial call is GIVE-LINES(p, n). Since the value of j decreases in each recur-
sive call, GIVE-LINES takes a total of O(n) time.

Solution to Problem 15-3

a. Dynamic programming is the ticket. This problem is slightly similar to the
longest-common-subsequence problem. In fact, we�ll deÞne the notational con-
veniences Xi and Yj in the similar manner as we did for the LCS problem:
Xi = x[1 . . i] and Yj = y[1 . . j].

Our subproblems will be determining an optimal sequence of operations that
converts Xi to Y j , for 0 ≤ i ≤ m and 0 ≤ j ≤ n. We�ll call this the �Xi → Y j

problem.� The original problem is the Xm → Yn problem.

Let�s suppose for the moment that we know what was the last operation used to
convert Xi to Y j . There are six possibilities. We denote by c[i, j] the cost of an
optimal solution to the Xi → Y j problem.

• If the last operation was a copy, then we must have had x[i] = y[j]. The sub-
problem that remains is converting Xi−1 to Y j−1. And an optimal solution to
the Xi → Y j problem must include an optimal solution to the Xi−1 → Y j−1

problem. The cut-and-paste argument applies. Thus, assuming that the last
operation was a copy, we have c[i, j] = c[i − 1, j − 1]+ cost(copy).

• If it was a replace, then we must have had x[i] �= y[j]. (Here, we assume that
we cannot replace a character with itself. It is a straightforward modiÞcation
if we allow replacement of a character with itself.) We have the same optimal
substructure argument as for copy, and assuming that the last operation was
a replace, we have c[i, j] = c[i − 1, j − 1]+ cost(replace).

• If it was a twiddle, then we must have had x[i] = y[j − 1] and x[i − 1] =
y[j], along with the implicit assumption that i, j ≥ 2. Now our subproblem
is Xi−2 → Y j−2 and, assuming that the last operation was a twiddle, we have
c[i, j] = c[i − 2, j − 2]+ cost(twiddle).

• If it was a delete, then we have no restrictions on x or y. Since we can view
delete as removing a character from Xi and leaving Yj alone, our subproblem
is Xi−1 → Y j . Assuming that the last operation was a delete, we have
c[i, j] = c[i − 1, j]+ cost(delete).

• If it was an insert, then we have no restrictions on x or y. Our subproblem
is Xi → Y j−1. Assuming that the last operation was an insert, we have
c[i, j] = c[i, j − 1]+ cost(insert).

15-28 Solutions for Chapter 15: Dynamic Programming

• If it was a kill, then we had to have completed converting Xm to Yn, so that
the current problem must be the Xm → Yn problem. In other words, we must
have i = m and j = n. If we think of a kill as a multiple delete, we can get
any Xi → Yn, where 0 ≤ i < m, as a subproblem. We pick the best one,
and so assuming that the last operation was a kill, we have

c[m, n] = min
0≤i<m

{c[i, n]} + cost(kill) .

We have not handled the base cases, in which i = 0 or j = 0. These are
easy. X0 and Y0 are the empty strings. We convert an empty string into Yj by
a sequence of j inserts, so that c[0, j] = j · cost(insert). Similarly, we convert
Xi into Y0 by a sequence of i deletes, so that c[i, 0] = i · cost(delete). When
i = j = 0, either formula gives us c[0, 0] = 0, which makes sense, since
there�s no cost to convert the empty string to the empty string.

For i, j > 0, our recursive formulation for c[i, j] applies the above formulas in
the situations in which they hold:

c[i, j] = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c[i − 1, j − 1]+ cost(copy) if x[i] = y[j] ,

c[i − 1, j − 1]+ cost(replace) if x[i] �= y[j] ,

c[i − 2, j − 2]+ cost(twiddle) if i, j ≥ 2,

x[i] = y[j − 1],
and x[i − 1] = y[j] ,

c[i − 1, j]+ cost(delete) always ,

c[i, j] = c[i, j − 1]+ cost(insert) always ,

min
0≤i<m

{c[i, n]} + cost(kill) if i = m and j = n .

Like we did for LCS, our pseudocode Þlls in the table in row-major order, i.e.,
row-by-row from top to bottom, and left to right within each row. Column-
major order (column-by-column from left to right, and top to bottom within
each column) would also work. Along with the c[i, j] table, we Þll in the table
op[i, j], holding which operation was used.

Solutions for Chapter 15: Dynamic Programming 15-29

EDIT-DISTANCE(x, y, m, n)

for i ← 0 to m
do c[i, 0] ← i · cost(delete)

op[i, 0] ← DELETE

for j ← 0 to n
do c[0, j] ← j · cost(insert)

op[0, j] ← INSERT

for i ← 1 to m
do for j ← 1 to n

do c[i, j] ←∞
if x[i] = y[j]
then c[i, j] ← c[i − 1, j − 1]+ cost(copy)

op[i, j] ← COPY

if x[i] �= y[j] and c[i − 1, j − 1]+ cost(replace) < c[i, j]
then c[i, j] ← c[i − 1, j − 1]+ cost(replace)

op[i, j] ← REPLACE(by y[j])
if i ≥ 2 and j ≥ 2 and x[i] = y[j − 1] and

x[i − 1] = y[j] and
c[i − 2, j − 2]+ cost(twiddle) < c[i, j]

then c[i, j] ← c[i − 2, j − 2]+ cost(twiddle)
op[i, j] ← TWIDDLE

if c[i − 1, j]+ cost(delete) < c[i, j]
then c[i, j] ← c[i − 1, j]+ cost(delete)

op[i, j] ← DELETE

if c[i, j − 1]+ cost(insert) < c[i, j]
then c[i, j] ← c[i, j − 1]+ cost(insert)

op[i, j] ← INSERT(y[j])
for i ← 0 to m − 1

do if c[i, n]+ cost(kill) < c[m, n]
then c[m, n] ← c[i, n]+ cost(kill)

op[m, n] ← KILL i
return c and op

The time and space are both �(mn). If we store a KILL operation in op[m, n],
we also include the index i after which we killed, to help us reconstruct the
optimal sequence of operations. (We don�t need to store y[i] in the op table for
replace or insert operations.)

To reconstruct this sequence, we use the op table returned by EDIT-DISTANCE.
The procedure OP-SEQUENCE(op, i, j) reconstructs the optimal operation se-
quence that we found to transform Xi into Yj . The base case is when i = j = 0.
The Þrst call is OP-SEQUENCE(op, m, n).

15-30 Solutions for Chapter 15: Dynamic Programming

OP-SEQUENCE(op, i, j)

if i = 0 and j = 0
then return

if op[i, j] = COPY or op[i, j] = REPLACE

then i ′ ← i − 1
j ′ ← j − 1

elseif op[i, j] = TWIDDLE

then i ′ ← i − 2
j ′ ← j − 2

elseif op[i, j] = DELETE

then i ′ ← i − 1
j ′ ← j

elseif op[i, j] = INSERT � Don�t care yet what character is inserted.
then i ′ ← i

j ′ ← j − 1
else � Must be KILL, and must have i = m and j = n.

let op[i, j] = KILLk
i ′ ← k
j ′ ← j

OP-SEQUENCE(op, i ′, j ′)
print op[i, j]

This procedure determines which subproblem we used, recurses on it, and then
prints its own last operation.

b. The DNA-alignment problem is just the edit-distance problem, with

cost(copy) = −1 ,

cost(replace) = +1 ,

cost(delete) = +2 ,

cost(insert) = +2 ,

and the twiddle and kill operations are not permitted.

The score that we are trying to maximize in the DNA-alignment problem is
precisely the negative of the cost we are trying to minimize in the edit-distance
problem. The negative cost of copy is not an impediment, since we can only
apply the copy operation when the characters are equal.

Solution to Problem 15-6

Denote each square by the pair (i, j), where i is the row number, j is the column
number, and 1 ≤ i, j ≤ n. Our goal is to Þnd a most proÞtable way from any
square in row 1 to any square in row n. Once we do so, we can look up all the most
proÞtable ways to get to any square in row n and pick the best one.

A subproblem is the most proÞtable way to get from some square in row 1 to
a particular square (i, j). We have optimal substructure as follows. Consider a
subproblem for (i, j), where i > 1, and consider the most proÞtable way to (i, j).

Solutions for Chapter 15: Dynamic Programming 15-31

Because of how we deÞne legal moves, it must be through square (i−1, j′), where
j ′ = j − 1, j, or j + 1. Then the way that we got to (i − 1, j′) within the most
proÞtable way to (i, j) must itself be a most proÞtable way to (i−1, j′). The usual
cut-and-paste argument applies. Suppose that in our most proÞtable way to (i, j),
which goes through (i − 1, j′), we earn a proÞt of d dollars to get to (i − 1, j′),
and then earn p((i − 1, j′), (i, j)) dollars getting from (i − 1, j′) to (i, j); thus,
we earn d + p((i − 1, j ′), (i, j)) dollars getting to (i, j). Now suppose that there�s
a way to (i − 1, j ′) that earns d′ dollars, where d′ > d . Then we would use that
to get to (i − 1, j ′) on our way to (i, j), earning d′ + p((i − 1, j ′), (i, j)) >

d+ p((i − 1, j ′), (i, j)), and thus contradicting the optimality of our way to (i, j).

We also have overlapping subproblems. We need the most proÞtable way to (i, j)
to Þnd the most proÞtable way to (i +1, j −1), to (i +1, j), and to (i + 1, j + 1).
So we�ll need to directly refer to the most proÞtable way to (i, j) up to three times,
and if we were to implement this algorithm recursively, we�d be solving each sub-
problem many times.

Let d[i, j] be the proÞt we earn in the most proÞtable way to (i, j). Then we have
that d[1, j] = 0 for all j = 1, 2, . . . , n. For i = 2, 3, . . . , n, we have

d[i, j] = max

⎧⎨⎩
d[i − 1, j − 1]+ p((i − 1, j − 1), (i, j)) if j > 1 ,

d[i − 1, j]+ p((i − 1, j), (i, j)) always ,

d[i − 1, j + 1]+ p((i − 1, j + 1), (i, j)) if j < n .

To keep track of how we got to (i, j) most proÞtably, we let w[i, j] be the value
of j used to achieve the maximum value of d[i, j]. These values are deÞned for
2 ≤ i ≤ n and 1 ≤ j ≤ n.

Thus, we can run the following procedure:

CHECKERBOARD(n, p)

for j ← 1 to n
do d[1, j] ← 0

for i ← 2 to n
do for j ← 1 to n

do d[i, j] ←−∞
if j > 1
then d[i, j] ← d[i − 1, j − 1]+ p((i − 1, j − 1), (i, j))

w[i, j] ← j − 1
if d[i − 1, j]+ p((i − 1, j), (i, j)) > d[i, j]
then d[i, j] ← d[i − 1, j]+ p((i − 1, j), (i, j))

w[i, j] ← j
if j < n and d[i − 1, j + 1]+ p((i − 1, j + 1), (i, j)) > d[i, j]
then d[i, j] ← d[i − 1, j + 1]+ p((i − 1, j + 1), (i, j))

w[i, j] ← j + 1
return d and w

Once we Þll in the d[i, j] table, the proÞt earned by the most proÞtable way to any
square along the top row is max1≤ j≤n {d[n, j]}.
To actually compute the set of moves, we use the usual recursive backtracking
method. This procedure prints the squares visited, from row 1 to row n:

15-32 Solutions for Chapter 15: Dynamic Programming

PRINT-MOVES(w, i, j)

if i > 1
then PRINT-MOVES(w, i − 1, w[i, j])

print �(� i �,� j �)�

Letting t = max1≤ j≤n {d[n, j]}, the initial call is PRINT-MOVES(w, n, t).

The time to run CHECKERBOARD is clearly �(n2). Once we have computed the
d and w tables, PRINT-MOVES runs in �(n) time, which we can see by observing
that i = n in the initial call and i decreases by 1 in each recursive call.

Lecture Notes for Chapter 16:
Greedy Algorithms

Chapter 16 Introduction

Similar to dynamic programming.

Used for optimization problems.

Idea: When we have a choice to make, make the one that looks best right now.
Make a locally optimal choice in hope of getting a globally optimal solution.

Greedy algorithms don�t always yield an optimal solution. But sometimes they
do. We�ll see a problem for which they do. Then we�ll look at some general
characteristics of when greedy algorithms give optimal solutions.

[We do not cover Huffman codes or matroids in these notes.]

Activity selection

n activities require exclusive use of a common resource. For example, scheduling
the use of a classroom.

Set of activities S = {a1, . . . , an}.
ai needs resource during period [si , fi), which is a half-open interval, where si =
start time and fi = Þnish time.

Goal: Select the largest possible set of nonoverlapping (mutually compatible) ac-
tivities.

Note: Could have many other objectives:

• Schedule room for longest time.
• Maximize income rental fees.

Example: S sorted by Þnish time: [Leave on board]

i 1 2 3 4 5 6 7 8 9
si 1 2 4 1 5 8 9 11 13
fi 3 5 7 8 9 10 11 14 16

16-2 Lecture Notes for Chapter 16: Greedy Algorithms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a1

a4

a5

a6

a7

a8

a9a2

a3

1615

Maximum-size mutually compatible set: {a1, a3, a6, a8}.
Not unique: also {a2, a5, a7, a9}.

Optimal substructure of activity selection

Sij = {ak ∈ S : fi ≤ sk < fk ≤ s j } [Leave on board]

= activities that start after ai Þnishes and Þnish before aj starts .

ai ak aj

fi sk fk sj
.

Activities in Sij are compatible with

• all activities that Þnish by fi , and
• all activities that start no earlier than sj .

To represent the entire problem, add Þctitious activities:

a0 = [−∞, 0)

an+1 = [∞, �∞+ 1�)

We don�t care about −∞ in a0 or �∞+ 1� in an+1.

Then S = S0,n+1.

Range for Sij is 0 ≤ i, j ≤ n + 1.

Assume that activities are sorted by monotonically increasing Þnish time:

f0 ≤ f1 ≤ f2 ≤ · · · ≤ fn < fn+1 .

Then i ≥ j ⇒ Sij = ∅. [Leave on board]

• If there exists ak ∈ Sij :

fi ≤ sk < fk ≤ s j < f j ⇒ fi < f j .

• But i ≥ j ⇒ fi ≥ f j . Contradiction.

So only need to worry about Sij with 0 ≤ i < j ≤ n + 1.

All other Sij are ∅.

Suppose that a solution to Sij includes ak . Have 2 subproblems:

• Sik (start after ai Þnishes, Þnish before ak starts)
• Skj (start after ak Þnishes, Þnish before aj starts)

Lecture Notes for Chapter 16: Greedy Algorithms 16-3

Solution to Sij is (solution to Sik) ∪ {ak} ∪ (solution to Skj).

Since ak is in neither subproblem, and the subproblems are disjoint,

|solution to S| = |solution to Sik | + 1+ |solution to Skj | .

If an optimal solution to Sij includes ak , then the solutions to Sik and Skj used
within this solution must be optimal as well. Use the usual cut-and-paste argument.

Let Aij = optimal solution to Sij .

So Aij = Aik ∪ {ak} ∪ Akj [leave on board] , assuming:

• Sij is nonempty, and
• we know ak .

Recursive solution to activity selection

c[i, j] = size of maximum-size subset of mutually compatible activities in Sij .

• i ≥ j ⇒ Sij = ∅ ⇒ c[i, j] = 0.

If Sij �= ∅, suppose we know that ak is in the subset. Then

c[i, j] = c[i, k]+ 1+ c[k, j] .

But of course we don�t know which k to use, and so

c[i, j] =
⎧⎨⎩

0 if Sij = ∅ ,

max
i<k< j
ak∈Si j

{c[i, k]+ c[k, j]+ 1} if Sij �= ∅ .

[The Þrst two printings of the book omit the requirement that ak ∈ Sij from this
max computation. This error was corrected in the third printing.]

Why this range of k? Because Sij = {ak ∈ S : fi ≤ sk < fk ≤ s j } ⇒ ak can�t be ai

or aj . Also need to ensure that ak is actually in Sij , since i < k < j is not sufÞcient
on its own to ensure this.

From here, we could continue treating this like a dynamic-programming problem.

We can simplify our lives, however.

Theorem
Let Sij �= ∅, and let am be the activity in Sij with the earliest Þnish time: fm =
min { fk : ak ∈ Sij }. Then:

1. am is used in some maximum-size subset of mutually compatible activities
of Sij .

2. Sim = ∅, so that choosing am leaves Smj as the only nonempty subproblem.

16-4 Lecture Notes for Chapter 16: Greedy Algorithms

Proof

2. Suppose there is some ak ∈ Sim . Then fi ≤ sk < fk ≤ sm < fm ⇒ fk < fm .
Then ak ∈ Sij and it has an earlier Þnish time than fm , which contradicts our
choice of am . Therefore, there is no ak ∈ Sim ⇒ Sim = ∅.

1. Let Aij be a maximum-size subset of mutually compatible activities in Sij .

Order activites in Aij in monotonically increasing order of Þnish time.

Let ak be the Þrst activity in Aij .

If ak = am , done (am is used in a maximum-size subset).

Otherwise, construct A′i j = Aij − {ak} ∪ {am} (replace ak by am).

Claim
Activities in A′i j are disjoint.

Proof Activities in Aij are disjoint, ak is the Þrst activity in Aij to Þnish,
fm ≤ fk (so am doesn�t overlap anything else in A′i j). (claim)

Since
∣∣A′i j

∣∣ = |Aij | and Aij is a maximum-size subset, so is A′i j . (theorem)

This is great:

before theorem after theorem
of subproblems in optimal solution 2 1
of choices to consider j − i − 1 1

Now we can solve top down:

• To solve a problem Sij ,

• Choose am ∈ Sij with earliest Þnish time: the greedy choice.
• Then solve Smj .

What are the subproblems?

• Original problem is S0,n+1.
• Suppose our Þrst choice is am1 .
• Then next subproblem is Sm1,n+1.
• Suppose next choice is am2 .
• Next subproblem is Sm2,n+1.
• And so on.

Each subproblem is Smi ,n+1, i.e., the last activities to Þnish.

And the subproblems chosen have Þnish times that increase.

Therefore, we can consider each activity just once, in monotonically increasing
order of Þnish time.

Lecture Notes for Chapter 16: Greedy Algorithms 16-5

Easy recursive algorithm: Assumes activites already sorted by monotonically in-
creasing Þnish time. (If not, then sort in O(n lg n) time.) Return an optimal solu-
tion for Si,n+1:

[The Þrst two printings had a procedure that purported to return an optimal solution
for Sij , where j > i . This procedure had an error: it worked only when j = n+ 1.
It turns out that it was called only with j = n + 1, however. To avoid this problem
altogether, the procedure was changed to the following in the third printing.]

REC-ACTIVITY-SELECTOR(s, f, i, n)

m ← i + 1
while m ≤ n and sm < fi � Find Þrst activity in Si,n+1.

do m ← m + 1
if m ≤ n
then return {am} ∪ REC-ACTIVITY-SELECTOR(s, f, m, n)

else return ∅
Initial call: REC-ACTIVITY-SELECTOR(s, f, 0, n).

Idea: The while loop checks ai+1, ai+2, . . . , an until it Þnds an activity am that is
compatible with ai (need sm ≥ fi).

• If the loop terminates because am is found (m ≤ n), then recursively solve
Sm,n+1, and return this solution, along with am .

• If the loop never Þnds a compatible am (m > n), then just return empty set.

Go through example given earlier. Should get {a1, a4, a8, a11}.
Time: �(n)�each activity examined exactly once.

Can make this iterative. It�s already almost tail recursive.

GREEDY-ACTIVITY-SELECTOR(s, f, n)

A ← {a1}
i ← 1
for m ← 2 to n

do if sm ≥ fi

then A ← A ∪ {am}
i ← m � ai is most recent addition to A

return A

Go through example given earlier. Should again get {a1, a4, a8, a11}.
Time: �(n).

Greedy strategy

The choice that seems best at the moment is the one we go with.

What did we do for activity selection?

16-6 Lecture Notes for Chapter 16: Greedy Algorithms

1. Determine the optimal substructure.

2. Develop a recursive solution.

3. Prove that at any stage of recursion, one of the optimal choices is the greedy
choice. Therefore, it�s always safe to make the greedy choice.

4. Show that all but one of the subproblems resulting from the greedy choice are
empty.

5. Develop a recursive greedy algorithm.

6. Convert it to an iterative algorithm.

At Þrst, it looked like dynamic programming.

Typically, we streamline these steps.

Develop the substructure with an eye toward

• making the greedy choice,
• leaving just one subproblem.

For activity selection, we showed that the greedy choice implied that in Sij , only i
varied, and j was Þxed at n + 1.

We could have started out with a greedy algorithm in mind:

• DeÞne Si = {ak ∈ S : fi ≤ sk}.
• Then show that the greedy choice�Þrst am to Þnish in Si�combined with

optimal solution to Sm ⇒ optimal solution to Si .

Typical streamlined steps:

1. Cast the optimization problem as one in which we make a choice and are left
with one subproblem to solve.

2. Prove that there�s always an optimal solution that makes the greedy choice, so
that the greedy choice is always safe.

3. Show that greedy choice and optimal solution to subproblem ⇒ optimal solu-
tion to the problem.

No general way to tell if a greedy algorithm is optimal, but two key ingredients are

1. greedy-choice property and

2. optimal substructure.

Greedy-choice property

A globally optimal solution can be arrived at by making a locally optimal (greedy)
choice.

Dynamic programming:

• Make a choice at each step.
• Choice depends on knowing optimal solutions to subproblems. Solve subprob-

lems Þrst.
• Solve bottom-up.

Lecture Notes for Chapter 16: Greedy Algorithms 16-7

Greedy:
• Make a choice at each step.
• Make the choice before solving the subproblems.
• Solve top-down.

Typically show the greedy-choice property by what we did for activity selection:
• Look at a globally optimal solution.
• If it includes the greedy choice, done.
• Else, modify it to include the greedy choice, yielding another solution that�s

just as good.

Can get efÞciency gains from greedy-choice property.
• Preprocess input to put it into greedy order.
• Or, if dynamic data, use a priority queue.

Optimal substructure

Just show that optimal solution to subproblem and greedy choice ⇒ optimal solu-
tion to problem.

Greedy vs. dynamic programming

The knapsack problem is a good example of the difference.

0-1 knapsack problem:
• n items.
• Item i is worth $vi , weighs wi pounds.
• Find a most valuable subset of items with total weight ≤ W .
• Have to either take an item or not take it�can�t take part of it.

Fractional knapsack problem: Like the 0-1 knapsack problem, but can take frac-
tion of an item.

Both have optimal substructure.

But the fractional knapsack problem has the greedy-choice property, and the 0-1
knapsack problem does not.

To solve the fractional problem, rank items by value/weight: vi/wi .

Let vi/wi ≥ vi+1/wi+1 for all i .

FRACTIONAL-KNAPSACK(v,w, W)

load ← 0
i ← 1
while load < W and i ≤ n

do if wi ≤ W − load
then take all of item i
else take (W − load)/wi of item i

add what was taken to load
i ← i + 1

16-8 Lecture Notes for Chapter 16: Greedy Algorithms

Time: O(n lg n) to sort, O(n) thereafter.

Greedy doesn�t work for the 0-1 knapsack problem. Might get empty space, which
lowers the average value per pound of the items taken.

i 1 2 3
vi 60 100 120
wi 10 20 30

vi/wi 6 5 4

W = 50.

Greedy solution:

• Take items 1 and 2.
• value = 160, weight = 30.

Have 20 pounds of capacity left over.

Optimal solution:

• Take items 2 and 3.
• value = 220, weight = 50.

No leftover capacity.

Solutions for Chapter 16:
Greedy Algorithms

Solution to Exercise 16.1-2

The proposed approach�selecting the last activity to start that is compatible with
all previously selected activities�is really the greedy algorithm but starting from
the end rather than the beginning.

Another way to look at it is as follows. We are given a set S = {a1, a2, . . . , an}
of activities, where ai = [si , fi), and we propose to Þnd an optimal solution by
selecting the last activity to start that is compatible with all previously selected
activities. Instead, let us create a set S′ = {a′1, a′2, . . . , a′n}, where a′i = [fi , si).
That is, a′i is ai in reverse. Clearly, a subset of {ai1 , ai2 , . . . , aik } ⊆ S is mutually
compatible if and only if the corresponding subset {a′i1 , a′i2 , . . . , a′ik } ⊆ S′ is also
mutually compatible. Thus, an optimal solution for S maps directly to an optimal
solution for S′ and vice versa.

The proposed approach of selecting the last activity to start that is compatible with
all previously selected activities, when run on S, gives the same answer as the
greedy algorithm from the text�selecting the Þrst activity to Þnish that is com-
patible with all previously selected activities�when run on S′. The solution that
the proposed approach Þnds for S corresponds to the solution that the text�s greedy
algorithm Þnds for S′, and so it is optimal.

Solution to Exercise 16.1-3

Let S be the set of n activities.

The �obvious� solution of using GREEDY-ACTIVITY-SELECTOR to Þnd a maxi-
mum-size set S1 of compatible activities from S for the Þrst lecture hall, then using
it again to Þnd a maximum-size set S2 of compatible activities from S − S1 for the
second hall, (and so on until all the activities are assigned), requires �(n2) time in
the worst case.

There is a better algorithm, however, whose asymptotic time is just the time needed
to sort the activities by time�O(n lg n) time for arbitrary times, or possibly as fast
as O(n) if the times are small integers.

The general idea is to go through the activities in order of start time, assigning
each to any hall that is available at that time. To do this, move through the set

16-10 Solutions for Chapter 16: Greedy Algorithms

of events consisting of activities starting and activities Þnishing, in order of event
time. Maintain two lists of lecture halls: Halls that are busy at the current event-
time t (because they have been assigned an activity i that started at si ≤ t but
won�t Þnish until fi > t) and halls that are free at time t . (As in the activity-
selection problem in Section 16.1, we are assuming that activity time intervals are
half open�i.e., that if si ≥ f j , then activities i and j are compatible.) When t
is the start time of some activity, assign that activity to a free hall and move the
hall from the free list to the busy list. When t is the Þnish time of some activity,
move the activity�s hall from the busy list to the free list. (The activity is certainly
in some hall, because the event times are processed in order and the activity must
have started before its Þnish time t , hence must have been assigned to a hall.)

To avoid using more halls than necessary, always pick a hall that has already had
an activity assigned to it, if possible, before picking a never-used hall. (This can be
done by always working at the front of the free-halls list�putting freed halls onto
the front of the list and taking halls from the front of the list�so that a new hall
doesn�t come to the front and get chosen if there are previously-used halls.)

This guarantees that the algorithm uses as few lecture halls as possible: The algo-
rithm will terminate with a schedule requiring m ≤ n lecture halls. Let activity i
be the Þrst activity scheduled in lecture hall m. The reason that i was put in the
mth lecture hall is that the Þrst m − 1 lecture halls were busy at time si . So at this
time there are m activities occurring simultaneously. Therefore any schedule must
use at least m lecture halls, so the schedule returned by the algorithm is optimal.

Run time:

• Sort the 2n activity-starts/activity-ends events. (In the sorted order, an activity-
ending event should precede an activity-starting event that is at the same time.)
O(n lg n) time for arbitrary times, possibly O(n) if the times are restricted (e.g.,
to small integers).

• Process the events in O(n) time: Scan the 2n events, doing O(1) work for each
(moving a hall from one list to the other and possibly associating an activity
with it).

Total: O(n + time to sort)

[The idea of this algorithm is related to the rectangle-overlap algorithm in Exer-
cise 14.3-7.]

Solution to Exercise 16.1-4

• For the approach of selecting the activity of least duration from those that are
compatible with previously selected activities:

i 1 2 3
si 0 2 3
fi 3 4 6
duration 3 2 3

This approach selects just {a2}, but the optimal solution selects {a1, a3}.

Solutions for Chapter 16: Greedy Algorithms 16-11

• For the approach of always selecting the compatible activity that overlaps the
fewest other remaining activities:

i 1 2 3 4 5 6 7 8 9 10 11
si 0 1 1 1 2 3 4 5 5 5 6
fi 2 3 3 3 4 5 6 7 7 7 8
of overlapping activities 3 4 4 4 4 2 4 4 4 4 3

This approach Þrst selects a6, and after that choice it can select only two other
activities (one of a1, a2, a3, a4 and one of a8, a9, a10, a11). An optimal solution
is {a1, a5, a7, a11}.

• For the approach of always selecting the compatible remaining activity with
the earliest start time, just add one more activity with the interval [0, 14) to
the example in Section 16.1. It will be the Þrst activity selected, and no other
activities are compatible with it.

Solution to Exercise 16.2-2

The solution is based on the optimal-substructure observation in the text: Let i
be the highest-numbered item in an optimal solution S for W pounds and items
1, . . . , n. Then S′ = S − {i} must be an optimal solution for W − wi pounds
and items 1, . . . , i − 1, and the value of the solution S is vi plus the value of the
subproblem solution S′.
We can express this relationship in the following formula: DeÞne c[i, w] to be the
value of the solution for items 1, . . . , i and maximum weight w. Then

c[i, w] =
⎧⎨⎩0 if i = 0 or w = 0 ,

c[i − 1, w] if wi > w ,

max(vi + c[i − 1, w − wi], c[i − 1, w]) if i > 0 and w ≥ wi .

The last case says that the value of a solution for i items either includes item i ,
in which case it is vi plus a subproblem solution for i − 1 items and the weight
excluding wi , or doesn�t include item i , in which case it is a subproblem solution
for i − 1 items and the same weight. That is, if the thief picks item i , he takes vi

value, and he can choose from items 1, . . . , i − 1 up to the weight limit w − wi ,
and get c[i − 1, w − wi] additional value. On the other hand, if he decides not to
take item i , he can choose from items 1, . . . , i − 1 up to the weight limit w, and
get c[i − 1, w] value. The better of these two choices should be made.

The algorithm takes as inputs the maximum weight W , the number of items n, and
the two sequences v = 〈v1, v2, . . . , vn〉 and w = 〈w1, w2, . . . , wn〉. It stores the
c[i, j] values in a table c[0 . . n, 0 . . W] whose entries are computed in row-major
order. (That is, the Þrst row of c is Þlled in from left to right, then the second row,
and so on.) At the end of the computation, c[n, W] contains the maximum value
the thief can take.

16-12 Solutions for Chapter 16: Greedy Algorithms

DYNAMIC-0-1-KNAPSACK(v,w, n, W)

for w ← 0 to W
do c[0, w] ← 0

for i ← 1 to n
do c[i, 0] ← 0
for w ← 1 to W

do if wi ≤ w

then if vi + c[i − 1, w − wi] > c[i − 1, w]
then c[i, w] ← vi + c[i − 1, w − wi]
else c[i, w] ← c[i − 1, w]

else c[i, w] ← c[i − 1, w]

The set of items to take can be deduced from the c table by starting at c[n, W] and
tracing where the optimal values came from. If c[i, w] = c[i −1, w], then item i is
not part of the solution, and we continue tracing with c[i − 1, w]. Otherwise item i
is part of the solution, and we continue tracing with c[i − 1, w − wi].

The above algorithm takes �(nW) time total:

• �(nW) to Þll in the c table: (n+1) · (W +1) entries, each requiring �(1) time
to compute.

• O(n) time to trace the solution (since it starts in row n of the table and moves
up one row at each step).

Solution to Exercise 16.2-4

The optimal strategy is the obvious greedy one. Starting will a full tank of gas,
Professor Midas should go to the farthest gas station he can get to within n miles
of Newark. Fill up there. Then go to the farthest gas station he can get to within n
miles of where he Þlled up, and Þll up there, and so on.

Looked at another way, at each gas station, Professor Midas should check whether
he can make it to the next gas station without stopping at this one. If he can, skip
this one. If he cannot, then Þll up. Professor Midas doesn�t need to know how
much gas he has or how far the next station is to implement this approach, since at
each Þllup, he can determine which is the next station at which he�ll need to stop.

This problem has optimal substructure. Suppose there are m possible gas stations.
Consider an optimal solution with s stations and whose Þrst stop is at the kth gas
station. Then the rest of the optimal solution must be an optimal solution to the
subproblem of the remaining m − k stations. Otherwise, if there were a better
solution to the subproblem, i.e., one with fewer than s − 1 stops, we could use it to
come up with a solution with fewer than s stops for the full problem, contradicting
our supposition of optimality.

This problem also has the greedy-choice property. Suppose there are k gas stations
beyond the start that are within n miles of the start. The greedy solution chooses
the kth station as its Þrst stop. No station beyond the kth works as a Þrst stop,
since Professor Midas runs out of gas Þrst. If a solution chooses a station j < k as

Solutions for Chapter 16: Greedy Algorithms 16-13

its Þrst stop, then Professor Midas could choose the kth station instead, having at
least as much gas when he leaves the kth station as if he�d chosen the j th station.
Therefore, he would get at least as far without Þlling up again if he had chosen the
kth station.

If there are m gas stations on the map, Midas needs to inspect each one just once.
The running time is O(m).

Solution to Exercise 16.2-6

Use a linear-time median algorithm to calculate the median m of the vi/wi ra-
tios. Next, partition the items into three sets: G = {i : vi/wi > m}, E =
{i : vi/wi = m}, and L = {i : vi/wi < m}; this step takes linear time. Compute
WG =∑i∈G wi and WE =∑i∈E wi , the total weight of the items in sets G and E ,
respectively.

• If WG > W , then do not yet take any items in set G, and instead recurse on the
set of items G and knapsack capacity W .

• Otherwise (WG ≤ W), take all items in set G, and take as much of the items in
set E as will Þt in the remaining capacity W − WG .

• If WG + WE ≥ W (i.e., there is no capacity left after taking all the items in
set G and all the items in set E that Þt in the remaining capacity W −WG), then
we are done.

• Otherwise (WG + WE < W), then after taking all the items in sets G and E ,
recurse on the set of items L and knapsack capacity W − WG − WE .

To analyze this algorithm, note that each recursive call takes linear time, exclusive
of the time for a recursive call that it may make. When there is a recursive call, there
is just one, and it�s for a problem of at most half the size. Thus, the running time is
given by the recurrence T (n) ≤ T (n/2)+�(n), whose solution is T (n) = O(n).

Solution to Exercise 16.2-7

Sort A and B into monotonically decreasing order.

Here�s a proof that this method yields an optimal solution. Consider any indices i
and j such that i < j , and consider the terms ai

bi and aj
b j . We want to show that

it is no worse to include these terms in the payoff than to include ai
b j and aj

bi , i.e.,
that ai

bi a j
b j ≥ ai

b j a j
bi . Since A and B are sorted into monotonically decreasing

order and i < j , we have ai ≥ a j and bi ≥ b j . Since ai and aj are positive
and bi − b j is nonnegative, we have ai

bi−b j ≥ a j
bi−b j . Multiplying both sides by

ai
b j a j

b j yields ai
bi a j

b j ≥ ai
b j a j

bi .

Since the order of multiplication doesn�t matter, sorting A and B into monotoni-
cally increasing order works as well.

16-14 Solutions for Chapter 16: Greedy Algorithms

Solution to Exercise 16.4-2

We need to show three things to prove that (S,I) is a matroid:

1. S is Þnite. That�s because S is the set of of m columns of matrix T .

2. I is hereditary. That�s because if B ∈ I, then the columns in B are linearly in-
dependent. If A ⊆ B, then the columns of A must also be linearly independent,
and so A ∈ I.

3. (S,I) satisÞes the exchange property. To see why, let us suppose that A, B ∈ I
and |A| < |B|.
We will use the following properties of matrices:

• The rank of a matrix is the number of columns in a maximal set of linearly
independent columns (see page 731 of the text). The rank is also equal to the
dimension of the column space of the matrix.

• If the column space of matrix B is a subspace of the column space of ma-
trix A, then rank(B) ≤ rank(A).

Because the columns in A are linearly independent, if we take just these
columns as a matrix A, we have that rank(A) = |A|. Similarly, if we take
the columns of B as a matrix B, we have rank(B) = |B|. Since |A| < |B|, we
have rank(A) < rank(B).

We shall show that there is some column b ∈ B that is not a linear combination
of the columns in A, and so A∪{b} is linearly independent. The proof proceeds
by contradiction. Assume that each column in B is a linear combination of
the columns of A. That means that any vector that is a linear combination
of the columns of B is also a linear combination of the columns of A, and
so, treating the columns of A and B as matrices, the column space of B is a
subspace of the column space of A. By the second property above, we have
rank(B) ≤ rank(A). But we have already shown that rank(A) < rank(B), a
contradiction. Therefore, some column in B is not a linear combination of the
columns of A, and (S,I) satisÞes the exchange property.

Solution to Exercise 16.4-3

We need to show three things to prove that (S,I′) is a matroid:

1. S is Þnite. We are given that.

2. I′ is hereditary. Suppose that B′ ∈ I′ and A′ ⊆ B ′. Since B ′ ∈ I′, there is
some maximal set B ∈ I such that B ⊆ S − B′. But A′ ⊆ B ′ implies that
S − B ′ ⊆ S − A′, and so B ⊆ S − B′ ⊆ S − A′. Thus, there exists a maximal
set B ∈ I such that B ⊆ S − A′, proving that A′ ∈ I′.

3. (S,I′) satisÞes the exchange property. We start with two preliminary facts
about sets. The proofs of these facts are omitted.

Solutions for Chapter 16: Greedy Algorithms 16-15

Fact 1: |X − Y | = |X | − |X ∩ Y |.
Fact 2: Let S be the universe of elements. If X − Y ⊆ Z and Z ⊆ S − Y , then
|X ∩ Z | = |X | − |X ∩ Y |.

To show that (S,I′) satisÞes the exchange property, let us assume that A′ ∈ I′,
B ′ ∈ I′, and that |A′| < |B ′|. We need to show that there exists some x ∈
B ′ − A′ such that A∪{x} ∈ I′. Because A′ ∈ I′ and B ′ ∈ I′, there are maximal
sets A ⊆ S − A′ and B ⊆ S − B ′ such that A ∈ I and B ∈ I.

DeÞne the set X = B′ − A′ − A, so that X consists of elements in B but not in
A′ or A.

If X is nonempty, then let x be any element of X . By how we deÞned set X , we
know that x ∈ B′ and x �∈ A′, so that x ∈ B′ − A′. Since x �∈ A, we also have
that A ⊆ S − A′ − {x} = S − (A ∪ {x}), and so A ∪ {x} ∈ I′.
If X is empty, the situation is more complicated. Because |A′| < |B ′|, we have
that B ′ − A′ �= ∅, and so X being empty means that B′ − A′ ⊆ A.

Claim
There is an element y ∈ B − A′ such that (A − B′) ∪ {y} ∈ I.

Proof First, observe that because A−B′ ⊆ A and A ∈ I, we have that A−B′ ∈
I. Similarly, B − A′ ⊆ B and B ∈ I, and so B − A′ ∈ I. If we show
that |A− B ′| < |B − A′|, the assumption that (S,I) is a matroid proves the
existence of y.

Because B′ − A′ ⊆ A and A ⊆ S − A′, we can apply Fact 2 to conclude
that |B ′ ∩ A| = |B ′| − |B ′ ∩ A′|. We claim that |B ∩ A′| ≤ |A′ − B ′|. To
see why, observe that A′ − B ′ = A′ ∩ (S − B ′) and B ⊆ S − B ′, and so
B ∩ A′ ⊆ (S − B ′) ∩ A′ = A′ ∩ (S − B ′) = A′ − B ′. Applying Fact 1, we
see that |A′ − B ′| = |A′| − |A′ ∩ B ′| = |A′| − |B ′ ∩ A′|, and hence |B ∩ A′| ≤
|A′| − |B ′ ∩ A′|.
Now, we have

|A′| < |B ′| (by assumption)

|A′| − |B ′ ∩ A′| < |B ′| − |B ′ ∩ A′| (subtracting same quantity)

|B ∩ A′| < |B ′| − |B ′ ∩ A′| (|B ∩ A′| ≤ |A′| − |B ′ ∩ A′|)
|B ∩ A′| < |B ′ ∩ A| (|B ′ ∩ A| = |B ′| − |B ′ ∩ A′|)

|B| − |B ∩ A′| > |A| − |B ′ ∩ A| (|A| = |B|)
|B − A′| > |A − B ′| (Fact 1) (claim)

Now we know there is an element y ∈ B − A′ such that (A − B′) ∪ {y} ∈ I.
Moreover, we claim that y �∈ A. To see why, we know that by the exchange
property, y �∈ A − B′. In order for y to be in A, it would have to be in A ∩ B′.
But y ∈ B, which means that y �∈ B′, and hence y �∈ A ∩ B′. Therefore y �∈ A.

We keep applying the exchange property, adding elements in B− A′ to A− B ′,
maintaining that the set we get is in I. Continue adding these elements until we
get a set, say C , such that |C| = |A|. Once |C| = |A|, there is some element
x ∈ A that we have not added into C . We know this because the element y that
we Þrst added into C was not in A, and so some element of A must be left over.

16-16 Solutions for Chapter 16: Greedy Algorithms

The set C is maximal, because it has the same cardinality as A, which is maxi-
mal, and C ∈ I. Since C started with all elements in A− B′ and we added only
elements in B− A′, at no time did C receive an element in A′. Because we also
never added x to C , we have that C ⊆ S − A′ − {x} = S − (A′ ∪ {x}), which
proves that A′ ∪ {x} ∈ I′, as we needed to show.

Solution to Problem 16-1

Before we go into the various parts of this problem, let us Þrst prove once and for
all that the coin-changing problem has optimal substructure.

Suppose we have an optimal solution for a problem of making change for n cents,
and we know that this optimal solution uses a coin whose value is c cents; let this
optimal solution use k coins. We claim that this optimal solution for the problem
of n cents must contain within it an optimal solution for the problem of n−c cents.
We use the usual cut-and-paste argument. Clearly, there are k − 1 coins in the
solution to the n − c cents problem used within our optimal solution to the n cents
problem. If we had a solution to the n− c cents problem that used fewer than k−1
coins, then we could use this solution to produce a solution to the n cents problem
that uses fewer than k coins, which contradicts the optimality of our solution.

a. A greedy algorithm to make change using quarters, dimes, nickels, and pennies
works as follows:

• Give q = 	n/25
 quarters. That leaves nq = n mod 25 cents to make
change.

• Then give d = 	nq/10
 dimes. That leaves nd = nq mod 10 cents to make
change.

• Then give k = 	nd/5
 nickels. That leaves nk = nd mod 5 cents to make
change.

• Finally, give p = nk pennies.

An equivalent formulation is the following. The problem we wish to solve is
making change for n cents. If n = 0, the optimal solution is to give no coins.
If n > 0, determine the largest coin whose value is less than or equal to n.
Let this coin have value c. Give one such coin, and then recursively solve the
subproblem of making change for n − c cents.

To prove that this algorithm yields an optimal solution, we Þrst need to show
that the greedy-choice property holds, that is, that some optimal solution to
making change for n cents includes one coin of value c, where c is the largest
coin value such that c ≤ n. Consider some optimal solution. If this optimal
solution includes a coin of value c, then we are done. Otherwise, this optimal
solution does not include a coin of value c. We have four cases to consider:

• If 1 ≤ n < 5, then c = 1. A solution may consist only of pennies, and so it
must contain the greedy choice.

• If 5 ≤ n < 10, then c = 5. By supposition, this optimal solution does not
contain a nickel, and so it consists of only pennies. Replace Þve pennies by
one nickel to give a solution with four fewer coins.

Solutions for Chapter 16: Greedy Algorithms 16-17

• If 10 ≤ n < 25, then c = 10. By supposition, this optimal solution does not
contain a dime, and so it contains only nickels and pennies. Some subset of
the nickels and pennies in this solution adds up to 10 cents, and so we can
replace these nickels and pennies by a dime to give a solution with (between
1 and 9) fewer coins.

• If 25 ≤ n, then c = 25. By supposition, this optimal solution does not
contain a quarter, and so it contains only dimes, nickels, and pennies. If
it contains three dimes, we can replace these three dimes by a quarter and
a nickel, giving a solution with one fewer coin. If it contains at most two
dimes, then some subset of the dimes, nickels, and pennies adds up to 25
cents, and so we can replace these coins by one quarter to give a solution
with fewer coins.

Thus, we have shown that there is always an optimal solution that includes the
greedy choice, and that we can combine the greedy choice with an optimal solu-
tion to the remaining subproblem to produce an optimal solution to our original
problem. Therefore, the greedy algorithm produces an optimal solution.

For the algorithm that chooses one coin at a time and then recurses on sub-
problems, the running time is �(k), where k is the number of coins used in an
optimal solution. Since k ≤ n, the running time is O(n). For our Þrst descrip-
tion of the algorithm, we perform a constant number of calculations (since there
are only 4 coin types), and the running time is O(1).

b. When the coin denominations are c0, c1, . . . , ck , the greedy algorithm to make
change for n cents works by Þnding the denomination cj such that j =
max {0 ≤ i ≤ k : ci ≤ n}, giving one coin of denomination cj , and recurs-
ing on the subproblem of making change for n − cj cents. (An equivalent,
but more efÞcient, algorithm is to give 	n/ck
 coins of denomination ck and
	(n mod ci+1)/ci
 coins of denomination ci for i = 0, 1, . . . , k − 1.)

To show that the greedy algorithm produces an optimal solution, we start by
proving the following lemma:

Lemma
For i = 0, 1, . . . , k, let ai be the number of coins of denomination ci used in
an optimal solution to the problem of making change for n cents. Then for
i = 0, 1, . . . , k − 1, we have ai < c.

Proof If ai ≥ c for some 0 ≤ i < k, then we can improve the solution by using
one more coin of denomination ci+1 and c fewer coins of denomination ci . The
amount for which we make change remains the same, but we use c − 1 > 0
fewer coins. (lemma)

To show that the greedy solution is optimal, we show that any non-greedy so-
lution is not optimal. As above, let j = max{0 ≤ i ≤ k : ci ≤ n}, so that the
greedy solution uses at least one coin of denomination cj . Consider a non-
greedy solution, which must use no coins of denomination cj or higher. Let the
non-greedy solution use ai coins of denomination ci , for i = 0, 1, . . . , j − 1;
thus we have

∑ j−1
i=0 ai ci = n. Since n ≥ c j , we have that

∑ j−1
i=0 ai ci ≥ c j .

16-18 Solutions for Chapter 16: Greedy Algorithms

Now suppose that the non-greedy solution is optimal. By the above lemma,
ai ≤ c − 1 for i = 0, 1, . . . , j − 1. Thus,
j−1∑
i=0

aic
i ≤

j−1∑
i=0

(c − 1)ci

= (c − 1)

j−1∑
i=0

ci

= (c − 1)
c j − 1

c − 1
= c j − 1

< c j ,

which contradicts our earlier assertion that
∑ j−1

i=0 ai ci ≥ c j . We conclude that
the non-greedy solution is not optimal.

Since any algorithm that does not produce the greedy solution fails to be opti-
mal, only the greedy algorithm produces the optimal solution.

The problem did not ask for the running time, but for the more efÞcient greedy-
algorithm formulation, it is easy to see that the running time is O(k), since we
have to perform at most k each of the division, ßoor, and mod operations.

c. With actual U.S. coins, we can use coins of denomination 1, 10, and 25. When
n = 30 cents, the greedy solution gives one quarter and Þve pennies, for a total
of six coins. The non-greedy solution of three dimes is better.

The smallest integer numbers we can use are 1, 3, and 4. When n = 6 cents, the
greedy solution gives one 4-cent coin and two 1-cent coins, for a total of three
coins. The non-greedy solution of two 3-cent coins is better.

d. Since we have optimal substructure, dynamic programming might apply. And
indeed it does.

Let us deÞne c[j] to be the minimum number of coins we need to make change
for j cents. Let the coin denominations be d1, d2, . . . , dk . Since one of the
coins is a penny, there is a way to make change for any amount j ≥ 1.

Because of the optimal substructure, if we knew that an optimal solution for
the problem of making change for j cents used a coin of denomination di , we
would have c[j] = 1+ c[j − di]. As base cases, we have that c[j] = 0 for all
j ≤ 0.

To develop a recursive formulation, we have to check all denominations, giving

c[j] =
{

0 if j ≤ 0 ,

1+ min
1≤i≤k

{c[j − di]} if j > 1 .

We can compute the c[j] values in order of increasing j by using a table. The
following procedure does so, producing a table c[1 . . n]. It avoids even exam-
ining c[j] for j ≤ 0 by ensuring that j ≥ di before looking up c[j − di]. The
procedure also produces a table denom[1 . . n], where denom[j] is the denomi-
nation of a coin used in an optimal solution to the problem of making change
for j cents.

Solutions for Chapter 16: Greedy Algorithms 16-19

COMPUTE-CHANGE(n, d, k)

for j ← 1 to n
do c[j] ←∞
for i ← 1 to k

do if j ≥ di and 1+ c[j − di] < c[j]
then c[j] ← 1+ c[j − di]

denom[j] ← di

return c and denom

This procedure obviously runs in O(nk) time.

We use the following procedure to output the coins used in the optimal solution
computed by COMPUTE-CHANGE:

GIVE-CHANGE(j, denom)

if j > 0
then give one coin of denomination denom[j]

GIVE-CHANGE(j − denom[j], denom)

The initial call is GIVE-CHANGE(n, denom). Since the value of the Þrst pa-
rameter decreases in each recursive call, this procedure runs in O(n) time.

Lecture Notes for Chapter 17:
Amortized Analysis

Chapter 17 overview

Amortized analysis

• Analyze a sequence of operations on a data structure.
• Goal: Show that although some individual operations may be expensive, on

average the cost per operation is small.

Average in this context does not mean that we�re averaging over a distribution of
inputs.

• No probability is involved.
• We�re talking about average cost in the worst case.

Organization

We�ll look at 3 methods:

• aggregate analysis
• accounting method
• potential method

Using 3 examples:

• stack with multipop operation
• binary counter
• dynamic tables (later on)

Aggregate analysis

Stack operations

• PUSH(S, x): O(1) each ⇒ O(n) for any sequence of n operations.
• POP(S): O(1) each ⇒ O(n) for any sequence of n operations.

17-2 Lecture Notes for Chapter 17: Amortized Analysis

• MULTIPOP(S, k)

while S is not empty and k > 0
do POP(S)

k ← k − 1

Running time of MULTIPOP:

• Linear in # of POP operations.
• Let each PUSH/POP cost 1.
• # of iterations of while loop is min(s, k), where s = # of objects on stack.
• Therefore, total cost = min(s, k).

Sequence of n PUSH, POP, MULTIPOP operations:

• Worst-case cost of MULTIPOP is O(n).
• Have n operations.
• Therefore, worst-case cost of sequence is O(n2).

Observation

• Each object can be popped only once per time that it�s pushed.
• Have ≤ n PUSHes ⇒≤ n POPs, including those in MULTIPOP.
• Therefore, total cost = O(n).
• Average over the n operations ⇒ O(1) per operation on average.

Again, notice no probability.

• Showed worst-case O(n) cost for sequence.
• Therefore, O(1) per operation on average.

This technique is called aggregate analysis.

Binary counter

• k-bit binary counter A[0 . . k − 1] of bits, where A[0] is the least signiÞcant bit
and A[k − 1] is the most signiÞcant bit.

• Counts upward from 0.

• Value of counter is
k−1∑
i=0

A[i] · 2i .

• Initially, counter value is 0, so A[0 . . k − 1] = 0.
• To increment, add 1 (mod 2k):

INCREMENT(A, k)

i ← 0
while i < k and A[i] = 1

do A[i] ← 0
i ← i + 1

if i < k
then A[i] ← 1

Lecture Notes for Chapter 17: Amortized Analysis 17-3

Example: k = 3

[Underlined bits ßip. Show costs later.]

counter A
value 2 1 0 cost

0 0 0 0 0
1 0 0 1 1
2 0 1 0 3
3 0 1 1 4
4 1 0 0 7
5 1 0 1 8
6 1 1 0 10
7 1 1 1 11
0 0 0 0 14
...

... 15

Cost of INCREMENT = �(# of bits ßipped) .

Analysis: Each call could ßip k bits, so n INCREMENTs takes O(nk) time.

Observation

Not every bit ßips every time.

[Show costs from above.]

bit ßips how often times in n INCREMENTs
0 every time n
1 1/2 the time 	n/2

2 1/4 the time 	n/4

...

i 1/2i the time 	n/2i

...

i ≥ k never 0

Therefore, total # of ßips =
k−1∑
i=0

	n/2i

< n
∞∑

i=0

1/2i

= n

(
1

1− 1/2

)
= 2n .

Therefore, n INCREMENTs costs O(n).

Average cost per operation = O(1).

17-4 Lecture Notes for Chapter 17: Amortized Analysis

Accounting method

Assign different charges to different operations.

• Some are charged more than actual cost.
• Some are charged less.

Amortized cost = amount we charge.

When amortized cost > actual cost, store the difference on speciÞc objects in the
data structure as credit.

Use credit later to pay for operations whose actual cost > amortized cost.

Differs from aggregate analysis:

• In the accounting method, different operations can have different costs.
• In aggregate analysis, all operations have same cost.

Need credit to never go negative.

• Otherwise, have a sequence of operations for which the amortized cost is not
an upper bound on actual cost.

• Amortized cost would tell us nothing.

Let ci = actual cost of i th operation ,

ĉi = amortized cost of i th operation .

Then require
n∑

i=1

ĉi ≥
n∑

i=1

ci for all sequences of n operations.

Total credit stored =
n∑

i=1

ĉi −
n∑

i=1

ci ≥︸︷︷︸
had better be

0 .

Stack

operation actual cost amortized cost
PUSH 1 2
POP 1 0
MULTIPOP min(k, s) 0

Intuition: When pushing an object, pay $2.

• $1 pays for the PUSH.
• $1 is prepayment for it being popped by either POP or MULTIPOP.
• Since each object has $1, which is credit, the credit can never go negative.
• Therefore, total amortized cost, = O(n), is an upper bound on total actual cost.

Lecture Notes for Chapter 17: Amortized Analysis 17-5

Binary counter

Charge $2 to set a bit to 1.

• $1 pays for setting a bit to 1.
• $1 is prepayment for ßipping it back to 0.
• Have $1 of credit for every 1 in the counter.
• Therefore, credit ≥ 0.

Amortized cost of INCREMENT:

• Cost of resetting bits to 0 is paid by credit.
• At most 1 bit is set to 1.
• Therefore, amortized cost ≤ $2.
• For n operations, amortized cost = O(n).

Potential method

Like the accounting method, but think of the credit as potential stored with the
entire data structure.

• Accounting method stores credit with speciÞc objects.
• Potential method stores potential in the data structure as a whole.
• Can release potential to pay for future operations.
• Most ßexible of the amortized analysis methods.

Let Di = data structure after i th operation ,

D0 = initial data structure ,

ci = actual cost of i th operation ,

ĉi = amortized cost of i th operation .

Potential function � : Di → R

�(Di) is the potential associated with data structure Di .
ĉi = ci +�(Di)−�(Di−1)

= ci +
�(Di)︸ ︷︷ ︸ .

increase in potential due to i th operation

Total amortized cost =
n∑

i=1

ĉi

=
n∑

i=1

(ci +�(Di)−�(Di−1))

(telescoping sum: every term other than D0 and Dn

is added once and subtracted once)

=
n∑

i=1

ci +�(Dn)−�(D0) .

17-6 Lecture Notes for Chapter 17: Amortized Analysis

If we require that �(Di) ≥ �(D0) for all i , then the amortized cost is always an
upper bound on actual cost.

In practice: �(D0) = 0, �(Di) ≥ 0 for all i .

Stack

� = # of objects in stack

(= # of $1 bills in accounting method)

D0 = empty stack ⇒ �(D0) = 0.

Since # of objects in stack is always ≥ 0, �(Di) ≥ 0 = �(D0) for all i .

operation actual cost
� amortized cost
PUSH 1 (s + 1)− s = 1 1+ 1 = 2

where s = # of objects initially
POP 1 (s − 1)− s = −1 1− 1 = 0
MULTIPOP k′ = min(k, s) (s − k′)− s = −k ′ k ′ − k ′ = 0

Therefore, amortized cost of a sequence of n operations = O(n).

Binary counter

� = bi = # of 1�s after i th INCREMENT

Suppose i th operation resets ti bits to 0.

ci ≤ ti + 1 (resets ti bits, sets ≤ 1 bit to 1)

• If bi = 0, the i th operation reset all k bits and didn�t set one, so
bi−1 = ti = k ⇒ bi = bi−1 − ti .

• If bi > 0, the i th operation reset ti bits, set one, so
bi = bi−1 − ti + 1.

• Either way, bi ≤ bi−1 − ti + 1.
• Therefore,

�(Di) ≤ (bi−1 − ti + 1)− bi−1

= 1− ti .

ĉi = ci +
�(Di)

≤ (ti + 1)+ (1− ti)

= 2 .

If counter starts at 0, �(D0) = 0.

Therefore, amortized cost of n operations = O(n).

Dynamic tables

A nice use of amortized analysis.

Lecture Notes for Chapter 17: Amortized Analysis 17-7

Scenario

• Have a table�maybe a hash table.
• Don�t know in advance how many objects will be stored in it.
• When it Þlls, must reallocate with a larger size, copying all objects into the new,

larger table.
• When it gets sufÞciently small, might want to reallocate with a smaller size.

Details of table organization not important.

Goals

1. O(1) amortized time per operation.

2. Unused space always ≤ constant fraction of allocated space.

Load factor α = num/size, where num = # items stored, size = allocated size.

If size = 0, then num = 0. Call α = 1.

Never allow α > 1.

Keep α > a constant fraction ⇒ goal (2).

Table expansion

Consider only insertion.

• When the table becomes full, double its size and reinsert all existing items.
• Guarantees that α ≥ 1/2.
• Each time we actually insert an item into the table, it�s an elementary insertion.

TABLE-INSERT(T, x)

if size[T] = 0
then allocate table[T] with 1 slot

size[T] ← 1
if num[T] = size[T] � expand?
then allocate new-table with 2 · size[T] slots

insert all items in table[T] into new-table � num[T] elem insertions
free table[T]
table[T] ← new-table
size[T] ← 2 · size[T]

insert x into table[T] � 1 elem insertion
num[T] ← num[T]+ 1

Initially, num[T] = size[T] = 0.

17-8 Lecture Notes for Chapter 17: Amortized Analysis

Running time: Charge 1 per elementary insertion. Count only elementary inser-
tions, since all other costs together are constant per call.

ci = actual cost of i th operation

• If not full, ci = 1.
• If full, have i − 1 items in the table at the start of the i th operation. Have to

copy all i − 1 existing items, then insert i th item ⇒ ci = i .

n operations ⇒ ci = O(n)⇒ O(n2) time for n operations.

Of course, we don�t always expand:

ci =
{

i if i − 1 is exact power of 2 ,

1 otherwise .

Total cost =
n∑

i=1

ci

≤ n +
	lg n
∑
j=0

2 j

= n + 2	lg n
+1 − 1

2− 1
< n + 2n

= 3n

Therefore, aggregate analysis says amortized cost per operation = 3.

Accounting method

Charge $3 per insertion of x .

• $1 pays for x�s insertion.
• $1 pays for x to be moved in the future.
• $1 pays for some other item to be moved.

Suppose we�ve just expanded, size = m before next expansion, size = 2m after
next expansion.

• Assume that the expansion used up all the credit, so that there�s no credit stored
after the expansion.

• Will expand again after another m insertions.
• Each insertion will put $1 on one of the m items that were in the table just after

expansion and will put $1 on the item inserted.
• Have $2m of credit by next expansion, when there are 2m items to move. Just

enough to pay for the expansion, with no credit left over!

Lecture Notes for Chapter 17: Amortized Analysis 17-9

Potential method

�(T) = 2 · num[T]− size[T]

• Initially, num = size = 0 ⇒ � = 0.
• Just after expansion, size = 2 · num ⇒ � = 0.
• Just before expansion, size = num ⇒ � = num ⇒ have enough potential to

pay for moving all items.
• Need � ≥ 0, always.

Always have

size ≥ num ≥ 1
2 · size ⇒

2 · num ≥ size ⇒
� ≥ 0 .

Amortized cost of ith operation:

numi = num after i th operation ,

sizei = size after i th operation ,

�i = � after i th operation .

• If no expansion:

sizei = sizei−1 ,

numi = numi−1 +1 ,

ci = 1 .

Then we have

ĉi = ci +�i −�i−1

= 1+ (2 · numi − sizei)− (2 · numi−1 − sizei−1)

= 1+ (2 · numi − sizei)− (2(numi −1)− sizei)

= 1+ 2

= 3 .

• If expansion:

sizei = 2 · sizei−1 ,

sizei−1 = numi−1 = numi −1 ,

ci = numi−1 +1 = numi .

Then we have

ĉi = ci +�i +�i−1

= numi + (2 · numi − sizei)− (2 · numi−1 − sizei−1)

= numi + (2 · numi −2(numi −1))− (2(numi −1)− (numi −1))

= numi + 2− (numi −1)

= 3 .

17-10 Lecture Notes for Chapter 17: Amortized Analysis

Φi

numisizei

0 8 16 24 32
0

8

16

24

32

i

Expansion and contraction

When α drops too low, contract the table.
• Allocate a new, smaller one.
• Copy all items.

Still want
• α bounded from below by a constant,
• amortized cost per operation = O(1).

Measure cost in terms of elementary insertions and deletions.

�Obvious strategy�:
• Double size when inserting into a full table (when α = 1, so that after insertion

α would become > 1).
• Halve size when deletion would make table less than half full (when α = 1/2,

so that after deletion α would become < 1/2).
• Then always have 1/2 ≤ α ≤ 1.
• Suppose we Þll table.

Then insert ⇒ double

2 deletes ⇒ halve

2 inserts ⇒ double

2 deletes ⇒ halve

· · ·
Not performing enough operations after expansion or contraction to pay for the
next one.

Simple solution:
• Double as before: when inserting with α = 1 ⇒ after doubling, α = 1/2.
• Halve size when deleting with α = 1/4 ⇒ after halving, α = 1/2.
• Thus, immediately after either expansion or contraction, have α = 1/2.
• Always have 1/4 ≤ α ≤ 1.

Lecture Notes for Chapter 17: Amortized Analysis 17-11

Intuition:

• Want to make sure that we perform enough operations between consecutive
expansions/contractions to pay for the change in table size.

• Need to delete half the items before contraction.
• Need to double number of items before expansion.
• Either way, number of operations between expansions/contractions is at least a

constant fraction of number of items copied.

�(T) =
{

2 · num[T]− size[T] if α ≥ 1/2 ,

size[T]/2− num[T] if α < 1/2 .

T empty ⇒ � = 0.

α ≥ 1/2 ⇒ num ≥ 1
2 · size ⇒ 2 · num ≥ size ⇒ � ≥ 0.

α < 1/2 ⇒ num < 1
2 · size ⇒ � ≥ 0.

Intuition: � measures how far from α = 1/2 we are.

• α = 1/2 ⇒ � = 2 · num−2 · num = 0.
• α = 1 ⇒ � = 2 · num− num = num.
• α = 1/4 ⇒ � = size /2− num = 4 · num /2− num = num.
• Therefore, when we double or halve, have enough potential to pay for moving

all num items.
• Potential increases linearly between α = 1/2 and α = 1, and it also increases

linearly between α = 1/2 and α = 1/4.
• Since α has different distances to go to get to 1 or 1/4, starting from 1/2, rate

of increase of � differs.

• For α to go from 1/2 to 1, num increases from size /2 to size, for a total
increase of size /2. � increases from 0 to size. Thus, � needs to increase
by 2 for each item inserted. That�s why there�s a coefÞcient of 2 on the
num[T] term in the formula for � when α ≥ 1/2.

• For α to go from 1/2 to 1/4, num decreases from size /2 to size /4, for a total
decrease of size /4. � increases from 0 to size /4. Thus, � needs to increase
by 1 for each item deleted. That�s why there�s a coefÞcient of −1 on the
num[T] term in the formula for � when α < 1/2.

Amortized costs: more cases

• insert, delete
• α ≥ 1/2, α < 1/2 (use αi , since α can vary a lot)
• size does/doesn�t change

Insert:

• αi−1 ≥ 1/2, same analysis as before ⇒ ĉi = 3.
• αi−1 < 1/2 ⇒ no expansion (only occurs when αi−1 = 1).

17-12 Lecture Notes for Chapter 17: Amortized Analysis

• If αi−1 < 1/2 and αi < 1/2:

ĉi = ci +�i +�i−1

= 1+ (sizei /2− numi)− (sizei−1 /2− numi−1)

= 1+ (sizei /2− numi)− (sizei /2− (numi −1))

= 0 .

• If αi−1 < 1/2 and αi ≥ 1/2:

ĉi = 1+ (2 · numi − sizei)− (sizei−1 /2− numi−1)

= 1+ (2(numi−1 +1)− sizei−1)− (sizei−1 /2− numi−1)

= 3 · numi−1 −3

2
· sizei−1 +3

= 3 · αi−1 sizei−1 −3

2
· sizei−1 +3

<
3

2
· sizei−1 −3

2
· sizei−1 +3

= 3 .

Therefore, amortized cost of insert is < 3.

Delete:

• If αi−1 < 1/2, then αi < 1/2.

• If no contraction:

ĉi = 1+ (sizei /2− numi)− (sizei−1 /2− numi−1)

= 1+ (sizei /2− numi)− (sizei /2− (numi +1))

= 2 .

• If contraction:

ĉi = (numi +1︸ ︷︷ ︸)+ (sizei /2− numi)− (sizei−1 /2− numi−1)

move + delete

[sizei /2 = sizei−1 /4 = numi−1 = numi +1]

= (numi +1)+ ((numi +1)− numi)− ((2 · numi +2)− (numi +1))

= 1 .

• If αi−1 ≥ 1/2, then no contraction.

• If αi ≥ 1/2:

ĉi = 1+ (2 · numi − sizei)− (2 · numi−1 − sizei−1)

= 1+ (2 · numi − sizei)− (2 · numi +2− sizei)

= −1 .

• If αi < 1/2, since αi−1 ≥ 1/2, have

numi = numi−1 −1 ≥ 1

2
· sizei−1 −1 = 1

2
· sizei −1 .

Lecture Notes for Chapter 17: Amortized Analysis 17-13

Thus,

ĉi = 1+ (sizei /2− numi)− (2 · numi−1 − sizei−1)

= 1+ (sizei /2− numi)− (2 · numi +2− sizei)

= −1+ 3

2
· sizei −3 · numi

≤ −1+ 3

2
· sizei −3

(
1

2
· sizei −1

)
= 2 .

Therefore, amortized cost of delete is ≤ 2.

Solutions for Chapter 17:
Amortized Analysis

Solution to Exercise 17.1-3

Let ci = cost of i th operation.

ci =
{

i if i is an exact power of 2 ,

1 otherwise .

Operation Cost
1 1
2 2
3 1
4 4
5 1
6 1
7 1
8 8
9 1
10 1
...

...

n operations cost

n∑
i=1

ci ≤ n +
lg n∑
j=0

2 j = n + (2n − 1) < 3n .

(Note: Ignoring ßoor in upper bound of
∑

2 j .)

Average cost of operation = Total cost
operations < 3

By aggregate analysis, the amortized cost per operation = O(1).

Solution to Exercise 17.2-1

[We assume that the only way in which COPY is invoked is automatically, after
every sequence of k PUSH and POP operations.]

Solutions for Chapter 17: Amortized Analysis 17-15

Charge $2 for each PUSH and POP operation and $0 for each COPY. When we call
PUSH, we use $1 to pay for the operation, and we store the other $1 on the item
pushed. When we call POP, we again use $1 to pay for the operation, and we store
the other $1 in the stack itself. Because the stack size never exceeds k, the actual
cost of a COPY operation is at most $k, which is paid by the $k found in the items in
the stack and the stack itself. Since there are k PUSH and POP operations between
two consecutive COPY operations, there are $k of credit stored, either on individual
items (from PUSH operations) or in the stack itself (from POP operations) by the
time a COPY occurs. Since the amortized cost of each operation is O(1) and the
amount of credit never goes negative, the total cost of n operations is O(n).

Solution to Exercise 17.2-2

Let ci = cost of i th operation.

ci =
{

i if i is an exact power of 2 ,

1 otherwise .

Charge each operation $3 (amortized cost ĉi).

• If i is not an exact power of 2, pay $1, and store $2 as credit.
• If i is an exact power of 2, pay $i , using stored credit.

Operation Cost Actual cost Credit remaining
1 3 1 2
2 3 2 3
3 3 1 5
4 3 4 4
5 3 1 6
6 3 1 8
7 3 1 10
8 3 8 5
9 3 1 7

10 3 1 9
...

...
...

...

Since the amortized cost is $3 per operation,
n∑

i=1

ĉi = 3n.

We know from Exercise 17.1-3 that
n∑

i=1

ci < 3n.

Then we have
n∑

i=1

ĉi ≥
n∑

i=1

ci ⇒ credit = amortized cost − actual cost ≥ 0.

Since the amortized cost of each operation is O(1), and the amount of credit never
goes negative, the total cost of n operations is O(n).

17-16 Solutions for Chapter 17: Amortized Analysis

Solution to Exercise 17.2-3

We introduce a new Þeld max[A] to hold the index of the high-order 1 in A. Ini-
tially, max[A] is set to −1, since the low-order bit of A is at index 0, and there
are initially no 1�s in A. The value of max[A] is updated as appropriate when the
counter is incremented or reset, and we use this value to limit how much of A must
be looked at to reset it. By controlling the cost of RESET in this way, we can limit
it to an amount that can be covered by credit from earlier INCREMENTs.

INCREMENT(A)

i ← 0
while i < length[A] and A[i] = 1

do A[i] ← 0
i ← i + 1

if i < length[A]
then A[i] ← 1

� Additions to book�s INCREMENT start here
if i > max[A]
then max[A] ← i

else max[A] ←−1

RESET(A)

for i ← 0 to max[A]
do A[i] ← 0

max[A] ←−1

As for the counter in the book, we assume that it costs $1 to ßip a bit. In addition,
we assume it costs $1 to update max[A].

Setting and resetting of bits by INCREMENT will work exactly as for the original
counter in the book: $1 will pay to set one bit to 1; $1 will be placed on the bit
that is set to 1 as credit; the credit on each 1 bit will pay to reset the bit during
incrementing.

In addition, we�ll use $1 to pay to update max, and if max increases, we�ll place
an additional $1 of credit on the new high-order 1. (If max doesn�t increase, we
can just waste that $1�it won�t be needed.) Since RESET manipulates bits at
positions only up to max[A], and since each bit up to there must have become the
high-order 1 at some time before the high-order 1 got up to max[A], every bit seen
by RESET has $1 of credit on it. So the zeroing of bits of A by RESET can be
completely paid for by the credit stored on the bits. We just need $1 to pay for
resetting max.

Thus charging $4 for each INCREMENT and $1 for each RESET is sufÞcient, so the
sequence of n INCREMENT and RESET operations takes O(n) time.

Solutions for Chapter 17: Amortized Analysis 17-17

Solution to Exercise 17.3-3

Let Di be the heap after the i th operation, and let Di consist of ni elements. Also,
let k be a constant such that each INSERT or EXTRACT-MIN operation takes at
most k ln n time, where n = max(ni−1, ni). (We don�t want to worry about taking
the log of 0, and at least one of ni−1 and ni is at least 1. We�ll see later why we use
the natural log.)

DeÞne

�(Di) =
{

0 if ni = 0 ,

kni ln ni if ni > 0 .

This function exhibits the characteristics we like in a potential function: if we start
with an empty heap, then �(D0) = 0, and we always maintain that �(Di) ≥ 0.

Before proving that we achieve the desired amortized times, we show that if n ≥ 2,
then n ln n

n−1 ≤ 2. We have

n ln
n

n − 1
= n ln

(
1+ 1

n − 1

)
= ln

(
1+ 1

n − 1

)n

≤ ln
(
e

1
n−1
)n

(since 1+ x ≤ ex for all real x)

= ln e
n

n−1

= n

n − 1
≤ 2 ,

assuming that n ≥ 2. (The equation ln e
n

n−1 = n
n−1 is why we use the natural log.)

If the i th operation is an INSERT, then ni = ni−1 + 1. If the i th operation inserts
into an empty heap, then ni = 1, ni−1 = 0, and the amortized cost is

ĉi = ci +�(Di)−�(Di−1)

≤ k ln 1+ k · 1 ln 1− 0

= 0 .

If the i th operation inserts into a nonempty heap, then ni = ni−1 + 1, and the
amortized cost is

ĉi = ci +�(Di)−�(Di−1)

≤ k ln ni + kni ln ni − kni−1 ln ni−1

= k ln ni + kni ln ni − k(ni − 1) ln(ni − 1)

= k ln ni + kni ln ni − kni ln(ni − 1)+ k ln(ni − 1)

< 2k ln ni + kni ln
ni

ni − 1
≤ 2k ln ni + 2k

= O(lg ni) .

If the i th operation is an EXTRACT-MIN, then ni = ni−1 − 1. If the i th operation
extracts the one and only heap item, then ni = 0, ni−1 = 1, and the amortized cost

17-18 Solutions for Chapter 17: Amortized Analysis

is

ĉi = ci +�(Di)−�(Di−1)

≤ k ln 1+ 0− k · 1 ln 1

= 0 .

If the i th operation extracts from a heap with more than 1 item, then ni = ni−1 − 1
and ni−1 ≥ 2, and the amortized cost is

ĉi = ci +�(Di)−�(Di−1)

≤ k ln ni−1 + kni ln ni − kni−1 ln ni−1

= k ln ni−1 + k(ni−1 − 1) ln(ni−1 − 1)− kni−1 ln ni−1

= k ln ni−1 + kni−1 ln(ni−1 − 1)− k ln(ni−1 − 1)− kni−1 ln ni−1

= k ln
ni−1

ni−1 − 1
+ kni−1 ln

ni−1 − 1

ni−1

< k ln
ni−1

ni−1 − 1
+ kni−1 ln 1

= k ln
ni−1

ni−1 − 1
≤ k ln 2 (since ni−1 ≥ 2)

= O(1) .

A slightly different potential function�which may be easier to work with�is as
follows. For each node x in the heap, let di(x) be the depth of x in Di . DeÞne

�(Di) =
∑
x∈Di

k(di (x)+ 1)

= k

(
ni +

∑
x∈Di

di (x)

)
,

where k is deÞned as before.

Initially, the heap has no items, which means that the sum is over an empty set, and
so �(D0) = 0. We always have �(Di) ≥ 0, as required.

Observe that after an INSERT, the sum changes only by an amount equal to the
depth of the new last node of the heap, which is 	lg ni
. Thus, the change
in potential due to an INSERT is k(1 + 	lg ni
), and so the amortized cost is
O(lg ni)+ O(lg ni) = O(lg ni) = O(lg n).

After an EXTRACT-MIN, the sum changes by the negative of the depth of the old
last node in the heap, and so the potential decreases by k(1 +	lg ni−1
). The
amortized cost is at most k lg ni−1 − k(1+ 	lg ni−1
) = O(1).

Solution to Problem 17-2

a. The SEARCH operation can be performed by searching each of the individually
sorted arrays. Since all the individual arrays are sorted, searching one of them
using a binary search algorithm takes O(lg m) time, where m is the size of the
array. In an unsuccessful search, the time is �(lg m). In the worst case, we may

Solutions for Chapter 17: Amortized Analysis 17-19

assume that all the arrays A0, A1, . . . , Ak−1 are full, k = �lg(n + 1)�, and we
perform an unsuccessful search. The total time taken is

T (n) = �(lg 2k−1 + lg 2k−2 + · · · + lg 21 + lg 20)

= �((k − 1)+ (k − 2)+ · · · + 1+ 0)

= �(k(k − 1)/2)

= �(�lg(n + 1)� (�lg(n + 1)� − 1)/2)

= �(lg2 n) .

Thus, the worst-case running time is �(lg2 n).

b. We create a new sorted array of size 1 containing the new element to be inserted.
If array A0 (which has size 1) is empty, then we replace A0 with the new sorted
array. Otherwise, we merge sort the two arrays into another sorted array of
size 2. If A1 is empty, then we replace A1 with the new array; otherwise we
merge sort the arrays as before and continue. Since array Ai is of size 2i , if we
merge sort two arrays of size 2i each, we obtain one of size 2i+1, which is the
size of Ai+1. Thus, this method will result in another list of arrays in the same
structure that we had before.

Let us analyze its worst-case running time. We will assume that merge sort
takes 2m time to merge two sorted lists of size m each. If all the arrays
A0, A1, . . . , Ak−2 are full, then the running time to Þll array Ak−1 would be

T (n) = 2 (20 + 21 + · · · + 2k−2)

= 2(2k−1 − 1)

= 2k − 2

= �(n) .

Therefore, the worst-case time to insert an element into this data structure is
�(n).

However, let us now analyze the amortized running time. Using the aggregate
method, we compute the total cost of a sequence of n inserts, starting with the
empty data structure. Let r be the position of the rightmost 0 in the binary
representation 〈nk−1, nk−2, . . . , n0〉 of n, so that n j = 1 for j = 0, 1, . . . , r−1.
The cost of an insertion when n items have already been inserted is

r−1∑
j=0

2 · 2 j = O(2r) .

Furthermore, r = 0 half the time, r = 1 a quarter of the time, and so on.
There are at most �n/2r� insertions for each value of r . The total cost of the n
operations is therefore bounded by

O

(�lg(n+1)�∑
r=0

(⌈ n

2r

⌉)
2r

)
= O(n lg n) .

The amortized cost per INSERT operation, therefore is O(lg n).

We can also use the accounting method to analyze the running time. We can
charge $k to insert an element. $1 pays for the insertion, and we put $(k − 1)

on the inserted item to pay for it being involved in merges later on. Each time
it is merged, it moves to a higher-indexed array, i.e., from Ai to Ai+1. It can

17-20 Solutions for Chapter 17: Amortized Analysis

move to a higher-indexed array at most k − 1 times, and so the $(k − 1) on the
item sufÞces to pay for all the times it will ever be involved in merges. Since
k = �(lg n), we have an amortized cost of �(lg n) per insertion.

c. DELETE(x) will be implemented as follows:

1. Find the smallest j for which the array Aj with 2 j elements is full. Let y be
the last element of Aj .

2. Let x be in the array Ai . If necessary, Þnd which array this is by using the
search procedure.

3. Remove x from Ai and put y into Ai . Then move y to its correct place in Ai .
4. Divide Aj (which now has 2 j − 1 elements left): The Þrst element goes into

array A0, the next 2 elements go into array A1, the next 4 elements go into
array A2, and so forth. Mark array Aj as empty. The new arrays are created
already sorted.

The cost of DELETE is �(n) in the worst case, where i = k − 1 and j =
k − 2: �(lg n) to Þnd Aj , �(lg2 n) to Þnd Ai , �(2i) = �(n) to put y in its
correct place in array Ai , and �(2 j) = �(n) to divide array Aj . The following
sequence of n operations, where n/3 is a power of 2, yields an amortized cost
that is no better: perform n/3 INSERT operations, followed by n/3 pairs of
DELETE and INSERT. It costs O(n lg n) to do the Þrst n/3 INSERT operations.
This creates a single full array. Each subsequent DELETE/INSERT pair costs
�(n) for the DELETE to divide the full array and another �(n) for the INSERT

to recombine it. The total is then �(n2), or �(n) per operation.

Solution to Problem 17-4

a. For RB-INSERT, consider a complete red-black tree in which the colors alter-
nate between levels. That is, the root is black, the children of the root are red,
the grandchildren of the root are black, the great-grandchildren of the root are
red, and so on. When a node is inserted as a red child of one of the red leaves,
then case 1 of RB-INSERT-FIXUP occurs (lg(n + 1))/2 times, so that there are
�(lg n) color changes to Þx the colors of nodes on the path from the inserted
node to the root.

For RB-DELETE, consider a complete red-black tree in which all nodes are
black. If a leaf is deleted, then the double blackness will be pushed all the way
up to the root, with a color change at each level (case 2 of RB-DELETE-FIXUP),
for a total of �(lg n) color changes.

b. All cases except for case 1 of RB-INSERT-FIXUP and case 2 of RB-DELETE-
FIXUP are terminating.

c. Case 1 of RB-INSERT-FIXUP reduces the number of red nodes by 1. As Fig-
ure 13.5 shows, node z�s parent and uncle change from red to black, and z�s
grandparent changes from black to red. Hence, �(T′) = �(T)− 1.

d. Lines 1�16 of RB-INSERT cause one node insertion and a unit increase in po-
tential. The nonterminating case of RB-INSERT-FIXUP (Case 1) makes three

Solutions for Chapter 17: Amortized Analysis 17-21

color changes and decreases the potential by 1. The terminating cases of RB-
INSERT-FIXUP (cases 2 and 3) cause one rotation each and do not affect the
potential. (Although case 3 makes color changes, the potential does not change.
As Figure 13.6 shows, node z�s parent changes from red to black, and z�s grand-
parent changes from black to red.)

e. The number of structural modiÞcations and amount of potential change result-
ing from lines 1�16 of RB-INSERT and from the terminating cases of RB-
INSERT-FIXUP are O(1), and so the amortized number of structural modiÞca-
tions of these parts is O(1). The nonterminating case of RB-INSERT-FIXUP

may repeat O(lg n) times, but its amortized number of structural modiÞcations
is 0, since by our assumption the unit decrease in the potential pays for the
structural modiÞcations needed. Therefore, the amortized number of structural
modiÞcations performed by RB-INSERT is O(1).

f. From Figure 13.5, we see that case 1 of RB-INSERT-FIXUP makes the follow-
ing changes to the tree:

• Changes a black node with two red children (node C) to a red node, resulting
in a potential change of −2.

• Changes a red node (node A in part (a) and node B in part (b)) to a black
node with one red child, resulting in no potential change.

• Changes a red node (node D) to a black node with no red children, resulting
in a potential change of 1.

The total change in potential is −1, which pays for the structural modiÞcations
performed, and thus the amortized number of structural modiÞcations in case 1
(the nonterminating case) is 0. The terminating cases of RB-INSERT-FIXUP

cause O(1) structural changes. Because w(v) is based solely on node colors and
the number of color changes caused by terminating cases is O(1), the change
in potential in terminating cases is O(1). Hence, the amortized number of
structural modiÞcations in the terminating cases is O(1). The overall amortized
number of structural modiÞcations in RB-INSERT, therefore, is O(1).

g. Figure 13.7 shows that case 2 of RB-DELETE-FIXUP makes the following
changes to the tree:

• Changes a black node with no red children (node D) to a red node, resulting
in a potential change of −1.

• If B is red, then it loses a black child, with no effect on potential.
• If B is black, then it goes from having no red children to having one red

child, resulting in a potential change of −1.

The total change in potential is either −1 or −2, depending on the color of B.
In either case, one unit of potential pays for the structural modiÞcations per-
formed, and thus the amortized number of structural modiÞcations in case 2
(the nonterminating case) is at most 0. The terminating cases of RB-DELETE

cause O(1) structural changes. Because w(v) is based solely on node col-
ors and the number of color changes caused by terminating cases is O(1), the
change in potential in terminating cases is O(1). Hence, the amortized number
of structural changes in the terminating cases is O(1). The overall amortized
number of structural modiÞcations in RB-DELETE-FIXUP, therefore, is O(1).

17-22 Solutions for Chapter 17: Amortized Analysis

h. Since the amortized number structural modiÞcation in each operation is O(1),
the actual number of structural modiÞcations for any sequence of m RB-
INSERT and RB-DELETE operations on an initially empty red-black tree is
O(m) in the worst case.

Lecture Notes for Chapter 21:
Data Structures for Disjoint Sets

Chapter 21 overview

Disjoint-set data structures

• Also known as �union Þnd.�
• Maintain collection S = {S1, . . . , Sk} of disjoint dynamic (changing over time)

sets.
• Each set is identiÞed by a representative, which is some member of the set.

Doesn�t matter which member is the representative, as long as if we ask for the
representative twice without modifying the set, we get the same answer both
times.

[We do not include notes for the proof of running time of the disjoint-set forest
implementation, which is covered in Section 21.4.]

Operations

• MAKE-SET(x): make a new set Si = {x}, and add Si to S.
• UNION(x, y): if x ∈ Sx, y ∈ Sy , then S ← S − Sx − Sy ∪ {Sx ∪ Sy}.

• Representative of new set is any member of Sx ∪ Sy, often the representative
of one of Sx and Sy.

• Destroys Sx and Sy (since sets must be disjoint).

• FIND-SET(x): return representative of set containing x .

Analysis in terms of:

• n = # of elements = # of MAKE-SET operations,
• m = total # of operations.

21-2 Lecture Notes for Chapter 21: Data Structures for Disjoint Sets

Analysis:

• Since MAKE-SET counts toward total # of operations, m ≥ n.
• Can have at most n − 1 UNION operations, since after n − 1 UNIONs, only 1

set remains.
• Assume that the Þrst n operations are MAKE-SET (helpful for analysis, usually

not really necessary).

Application: dynamic connected components.

For a graph G = (V, E), vertices u, v are in same connected component if and
only if there�s a path between them.

• Connected components partition vertices into equivalence classes.

CONNECTED-COMPONENTS(V, E)

for each vertex v ∈ V
do MAKE-SET(v)

for each edge (u, v) ∈ E
do if FIND-SET(u) �= FIND-SET(v)

then UNION(u, v)

SAME-COMPONENT(u, v)

if FIND-SET(u) = FIND-SET(v)

then return TRUE

else return FALSE

Note: If actually implementing connected components,

• each vertex needs a handle to its object in the disjoint-set data structure,
• each object in the disjoint-set data structure needs a handle to its vertex.

Linked list representation

• Each set is a singly linked list.
• Each list node has Þelds for

• the set member
• pointer to the representative
• next

• List has head (pointer to representative) and tail.

MAKE-SET: create a singleton list.

FIND-SET: return pointer to representative.

UNION: a couple of ways to do it.

1. UNION(x, y): append x�s list onto end of y�s list. Use y�s tail pointer to Þnd
the end.

Lecture Notes for Chapter 21: Data Structures for Disjoint Sets 21-3

• Need to update the representative pointer for every node on x�s list.
• If appending a large list onto a small list, it can take a while.

Operation # objects updated
UNION(x1, x2) 1
UNION(x2, x3) 2
UNION(x3, x4) 3
UNION(x4, x5) 4

...
...

UNION(xn−1, xn) n − 1
�(n2) total

Amortized time per operation = �(n).

2. Weighted-union heuristic: Always append the smaller list to the larger list.

A single union can still take �(n) time, e.g., if both sets have n/2 members.

Theorem
With weighted union, a sequence of m operations on n elements takes
O(m + n lg n) time.

Sketch of proof Each MAKE-SET and FIND-SET still takes O(1). How many
times can each object�s representative pointer be updated? It must be in the
smaller set each time.

times updated size of resulting set
1 ≥ 2
2 ≥ 4
3 ≥ 8
...

...

k ≥ 2k

...
...

lg n ≥ n

Therefore, each representative is updated ≤ lg n times. (theorem)

Seems pretty good, but we can do much better.

Disjoint-set forest

Forest of trees.

• 1 tree per set. Root is representative.
• Each node points only to its parent.

21-4 Lecture Notes for Chapter 21: Data Structures for Disjoint Sets

c

h e

b

f

d

g

f

c

h e

b

d

g

UNION(e,g)

• MAKE-SET: make a single-node tree.
• UNION: make one root a child of the other.
• FIND-SET: follow pointers to the root.

Not so good�could get a linear chain of nodes.

Great heuristics

• Union by rank: make the root of the smaller tree (fewer nodes) a child of the
root of the larger tree.

• Don�t actually use size.
• Use rank, which is an upper bound on height of node.
• Make the root with the smaller rank into a child of the root with the larger

rank.

• Path compression: Find path = nodes visited during FIND-SET on the trip to
the root. Make all nodes on the Þnd path direct children of root.

a

b

c

d

d

a b c

MAKE-SET(x)

p[x] ← x
rank[x] ← 0

UNION(x, y)

LINK(FIND-SET(x), FIND-SET(y))

Lecture Notes for Chapter 21: Data Structures for Disjoint Sets 21-5

LINK(x, y)

if rank[x] > rank[y]
then p[y] ← x
else p[x] ← y

� If equal ranks, choose y as parent and increment its rank.
if rank[x] = rank[y]
then rank[y] ← rank[y]+ 1

FIND-SET(x)

if x �= p[x]
then p[x] ← FIND-SET(p[x])

return p[x]

FIND-SET makes a pass up to Þnd the root, and a pass down as recursion unwinds
to update each node on Þnd path to point directly to root.

Running time

If use both union by rank and path compression, O(m α(n)).

n α(n)

0�2 0
3 1

4�7 2
8�2047 3

2048�A4(1) 4

What�s A4(1)? See Section 21.4, if you dare. It�s � 1080 ≈ # of atoms in observ-
able universe.

This bound is tight�there is a sequence of operations that takes �(m α(n)) time.

Solutions for Chapter 21:
Data Structures for Disjoint Sets

Solution to Exercise 21.2-3

We want to show that we can assign O(1) charges to MAKE-SET and FIND-SET

and an O(lg n) charge to UNION such that the charges for a sequence of these
operations are enough to cover the cost of the sequence�O(m+n lg n), according
to the theorem. When talking about the charge for each kind of operation, it is
helpful to also be able to talk about the number of each kind of operation.

Consider the usual sequence of m MAKE-SET, UNION, and FIND-SET operations,
n of which are MAKE-SET operations, and let l < n be the number of UNION

operations. (Recall the discussion in Section 21.1 about there being at most n − 1
UNION operations.) Then there are n MAKE-SET operations, l UNION operations,
and m − n − l FIND-SET operations.

The theorem didn�t separately name the number l of UNIONs; rather, it bounded
the number by n. If you go through the proof of the theorem with l UNIONs, you
get the time bound O(m−l+l lg l) = O(m+l lg l) for the sequence of operations.
That is, the actual time taken by the sequence of operations is at most c(m+ l lg l),
for some constant c.

Thus, we want to assign operation charges such that

(MAKE-SET charge) · n
+(FIND-SET charge) · (m − n − l)
+(UNION charge) · l
≥ c(m + l lg l) ,

so that the amortized costs give an upper bound on the actual costs.

The following assignments work, where c′ is some constant ≥ c:

• MAKE-SET: c′
• FIND-SET: c′
• UNION: c′(lg n + 1)

Substituting into the above sum, we get

c′n + c′(m − n − l)+ c′(lg n + 1)l = c′m + c′l lg n

= c′(m + l lg n)

> c(m + l lg l) .

Solutions for Chapter 21: Data Structures for Disjoint Sets 21-7

Solution to Exercise 21.2-5

Let�s call the two lists A and B, and suppose that the representative of the new list
will be the representative of A. Rather than appending B to the end of A, instead
splice B into A right after the Þrst element of A. We have to traverse B to update
representative pointers anyway, so we can just make the last element of B point to
the second element of A.

Solution to Exercise 21.3-3

You need to Þnd a sequence of m operations on n elements that takes �(m lg n)

time. Start with n MAKE-SETs to create singleton sets {x1} , {x2} , . . . , {xn}. Next
perform the n− 1 UNION operations shown below to create a single set whose tree
has depth lg n.

UNION(x1, x2) n/2 of these
UNION(x3, x4)

UNION(x5, x6)
...

UNION(xn−1, xn)

UNION(x2, x4) n/4 of these
UNION(x6, x8)

UNION(x10, x12)
...

UNION(xn−2, xn)

UNION(x4, x8) n/8 of these
UNION(x12, x16)

UNION(x20, x24)
...

UNION(xn−4, xn)
...

UNION(xn/2, xn) 1 of these

Finally, perform m − 2n + 1 FIND-SET operations on the deepest element in the
tree. Each of these FIND-SET operations takes �(lg n) time. Letting m ≥ 3n, we
have more than m/3 FIND-SET operations, so that the total cost is �(m lg n).

Solution to Exercise 21.3-4

With the path-compression heuristic, the sequence of m MAKE-SET, FIND-SET,
and LINK operations, where all the LINK operations take place before any of the

21-8 Solutions for Chapter 21: Data Structures for Disjoint Sets

FIND-SET operations, runs in O(m) time. The key observation is that once a
node x appears on a Þnd path, x will be either a root or a child of a root at all times
thereafter.

We use the accounting method to obtain the O(m) time bound. We charge a
MAKE-SET operation two dollars. One dollar pays for the MAKE-SET, and one
dollar remains on the node x that is created. The latter pays for the Þrst time that x
appears on a Þnd path and is turned into a child of a root.

We charge one dollar for a LINK operation. This dollar pays for the actual linking
of one node to another.

We charge one dollar for a FIND-SET. This dollar pays for visiting the root and
its child, and for the path compression of these two nodes, during the FIND-SET.
All other nodes on the Þnd path use their stored dollar to pay for their visitation
and path compression. As mentioned, after the FIND-SET, all nodes on the Þnd
path become children of a root (except for the root itself), and so whenever they
are visited during a subsequent FIND-SET, the FIND-SET operation itself will pay
for them.

Since we charge each operation either one or two dollars, a sequence of m opera-
tions is charged at most 2m dollars, and so the total time is O(m).

Observe that nothing in the above argument requires union by rank. Therefore, we
get an O(m) time bound regardless of whether we use union by rank.

Solution to Exercise 21.4-4

Clearly, each MAKE-SET and LINK operation takes O(1) time. Because the rank
of a node is an upper bound on its height, each Þnd path has length O(lg n), which
in turn implies that each FIND-SET takes O(lg n) time. Thus, any sequence of
m MAKE-SET, LINK, and FIND-SET operations on n elements takes O(m lg n)

time. It is easy to prove an analogue of Lemma 21.7 to show that if we convert a
sequence of m′ MAKE-SET, UNION, and FIND-SET operations into a sequence of
m MAKE-SET, LINK, and FIND-SET operations that take O(m lg n) time, then the
sequence of m′ MAKE-SET, UNION, and FIND-SET operations takes O(m′ lg n)

time.

Solution to Exercise 21.4-5

Professor Dante is mistaken. Take the following scenario. Let n = 16, and make
16 separate singleton sets using MAKE-SET. Then do 8 UNION operations to link
the sets into 8 pairs, where each pair has a root with rank 0 and a child with rank 1.
Now do 4 UNIONs to link pairs of these trees, so that there are 4 trees, each with a
root of rank 2, children of the root of ranks 1 and 0, and a node of rank 0 that is the
child of the rank-1 node. Now link pairs of these trees together, so that there are
two resulting trees, each with a root of rank 3 and each containing a path from a
leaf to the root with ranks 0, 1, and 3. Finally, link these two trees together, so that

Solutions for Chapter 21: Data Structures for Disjoint Sets 21-9

there is a path from a leaf to the root with ranks 0, 1, 3, and 4. Let x and y be the
nodes on this path with ranks 1 and 3, respectively. Since A1(1) = 3, level(x) = 1,
and since A0(3) = 4, level(y) = 0. Yet y follows x on the Þnd path.

Solution to Exercise 21.4-6

First, α′(22047 − 1) = min {k : Ak(1) ≥ 2047} = 3, and 22047 − 1 � 1080.

Second, we need that 0 ≤ level(x) ≤ α′(n) for all nonroots x with rank[x] ≥ 1.
With this deÞnition of α′(n), we have Aα′(n)(rank[x]) ≥ Aα′(n)(1) ≥ lg(n + 1) >

lg n ≥ rank(p[x]). The rest of the proof goes through with α′(n) replacing α(n).

Solution to Problem 21-1

a. For the input sequence

4, 8, E, 3, E, 9, 2, 6, E, E, E, 1, 7, E, 5 ,

the values in the extracted array would be 4, 3, 2, 6, 8, 1.

The following table shows the situation after the i th iteration of the for loop
when we use OFF-LINE-MINIMUM on the same input. (For this input, n = 9
and m�the number of extractions�is 6).

i K1 K2 K3 K4 K5 K6 K7 extracted
1 2 3 4 5 6

0 {4, 8} {3} {9, 2, 6} {} {} {1, 7} {5}
1 {4, 8} {3} {9, 2, 6} {} {} {5, 1, 7} 1
2 {4, 8} {3} {9, 2, 6} {} {5, 1, 7} 2 1
3 {4, 8} {9, 2, 6, 3} {} {5, 1, 7} 3 2 1
4 {9, 2, 6, 3, 4, 8} {} {5, 1, 7} 4 3 2 1
5 {9, 2, 6, 3, 4, 8} {} {5, 1, 7} 4 3 2 1
6 {9, 2, 6, 3, 4, 8} {5, 1, 7} 4 3 2 6 1
7 {9, 2, 6, 3, 4, 8} {5, 1, 7} 4 3 2 6 1
8 {5, 1, 7, 9, 2, 6, 3, 4, 8} 4 3 2 6 8 1

Because j = m + 1 in the iterations for i = 5 and i = 7, no changes occur in
these iterations.

b. We want to show that the array extracted returned by OFF-LINE-MINIMUM is
correct, meaning that for i = 1, 2, . . . , m, extracted[j] is the key returned by
the j th EXTRACT-MIN call.

We start with n INSERT operations and m EXTRACT-MIN operations. The
smallest of all the elements will be extracted in the Þrst EXTRACT-MIN after
its insertion. So we Þnd j such that the minimum element is in Kj , and put the
minimum element in extracted[j], which corresponds to the EXTRACT-MIN

after the minimum element insertion.

Now we reduce to a similar problem with n − 1 INSERT operations and m − 1
EXTRACT-MIN operations in the following way: the INSERT operations are

21-10 Solutions for Chapter 21: Data Structures for Disjoint Sets

the same but without the insertion of the smallest that was extracted, and the
EXTRACT-MIN operations are the same but without the extraction that ex-
tracted the smallest element.

Conceptually, we unite Ij and I j+1, removing the extraction between them and
also removing the insertion of the minimum element from Ij ∪ I j+1. Uniting I j

and I j+1 is accomplished by line 6. We need to determine which set is Kl , rather
than just using Kj+1 unconditionally, because Kj+1 may have been destroyed
when it was united into a higher-indexed set by a previous execution of line 6.

Because we process extractions in increasing order of the minimum value
found, the remaining iterations of the for loop correspond to solving the re-
duced problem.

There are two other points worth making. First, if the smallest remaining el-
ement had been inserted after the last EXTRACT-MIN (i.e., j = m + 1), then
no changes occur, because this element is not extracted. Second, there may be
smaller elements within the Kj sets than the the one we are currently looking
for. These elements do not affect the result, because they correspond to ele-
ments that were already extracted, and their effect on the algorithm�s execution
is over.

c. To implement this algorithm, we place each element in a disjoint-set forest.
Each root has a pointer to its Ki set, and each Ki set has a pointer to the root of
the tree representing it. All the valid sets Ki are in a linked list.

Before OFF-LINE-MINIMUM, there is initialization that builds the initial sets Ki

according to the Ii sequences.

• Line 2 (�determine j such that i ∈ Kj �) turns into j ← FIND-SET(i).
• Line 5 (�let l be the smallest value greater than j for which set Kl exists�)

turns into Kl ← next[K j].
• Line 6 (�Kl ← K j ∪ Kl , destroying K j �) turns into l ← LINK(j, l) and

remove K j from the linked list.

To analyze the running time, we note that there are n elements and that we have
the following disjoint-set operations:

• n MAKE-SET operations
• at most n − 1 UNION operations before starting
• n FIND-SET operations
• at most n LINK operations

Thus the number m of overall operations is O(n). The total running time is
O(m α(n)) = O(n α(n)).

[The �tight bound� wording that this question uses does not refer to an �asymp-
totically tight� bound. Instead, the question is merely asking for a bound that is
not too �loose.�]

Solutions for Chapter 21: Data Structures for Disjoint Sets 21-11

Solution to Problem 21-2

a. Denote the number of nodes by n, and let n = (m + 1)/3, so that m =
3n − 1. First, perform the n operations MAKE-TREE(v1), MAKE-TREE(v2),
. . . , MAKE-TREE(vn). Then perform the sequence of n − 1 GRAFT operations
GRAFT(v1, v2), GRAFT(v2, v3), . . . , GRAFT(vn−1, vn); this sequence produces
a single disjoint-set tree that is a linear chain of n nodes with vn at the root
and v1 as the only leaf. Then perform FIND-DEPTH(v1) repeatedly, n times.
The total number of operations is n + (n − 1)+ n = 3n − 1 = m.

Each MAKE-TREE and GRAFT operation takes O(1) time. Each FIND-DEPTH

operation has to follow an n-node Þnd path, and so each of the n FIND-DEPTH

operations takes �(n) time. The total time is n · �(n) + (2n − 1) · O(1) =
�(n2) = �(m2).

b. MAKE-TREE is like MAKE-SET, except that it also sets the d value to 0:

MAKE-TREE(v)

p[v] ← v

rank[v] ← 0
d[v] ← 0

It is correct to set d[v] to 0, because the depth of the node in the single-node
disjoint-set tree is 0, and the sum of the depths on the Þnd path for v consists
only of d[v].

c. FIND-DEPTH will call a procedure FIND-ROOT:

FIND-ROOT(v)

if p[v] �= p[p[v]]
then y ← p[v]

p[v] ← FIND-ROOT(y)

d[v] ← d[v]+ d[y]
return p[v]

FIND-DEPTH(v)

FIND-ROOT(v) � No need to save the return value.
if v = p[v]
then return d[v]
else return d[v]+ d[p[v]]

FIND-ROOT performs path compression and updates pseudodistances along the
Þnd path from v. It is similar to FIND-SET on page 508, but with three changes.
First, when v is either the root or a child of a root (one of these conditions holds
if and only if p[v] = p[p[v]]) in the disjoint-set forest, we don�t have to re-
curse; instead, we just return p[v]. Second, when we do recurse, we save the
pointer p[v] into a new variable y. Third, when we recurse, we update d[v] by
adding into it the d values of all nodes on the Þnd path that are no longer proper

21-12 Solutions for Chapter 21: Data Structures for Disjoint Sets

ancestors of v after path compression; these nodes are precisely the proper an-
cestors of v other than the root. Thus, as long as v does not start out the FIND-
ROOT call as either the root or a child of the root, we add d[y] into d[v]. Note
that d[y] has been updated prior to updating d[v], if y is also neither the root
nor a child of the root.

FIND-DEPTH Þrst calls FIND-ROOT to perform path compression and update
pseudodistances. Afterward, the Þnd path from v consists of either just v (if v

is a root) or just v and p[v] (if v is not a root, in which case it is a child of the
root after path compression). In the former case, the depth of v is just d[v], and
in the latter case, the depth is d[v]+ d[p[v]].

d. Our procedure for GRAFT is a combination of UNION and LINK:

GRAFT(r, v)

r ′ ← FIND-ROOT(r)

v′ ← FIND-ROOT(v)

z ← FIND-DEPTH(v)

if rank[r ′] > rank[v′]
then p[v′] ← r ′

d[r ′] ← d[r ′]+ z + 1
d[v′] ← d[v′]− d[r ′]

else p[r ′] ← v′
d[r ′] ← d[r ′]+ z + 1− d[v′]
if rank[r ′] = rank[v′]
then rank[v′] ← rank[v′]+ 1

This procedure works as follows. First, we call FIND-ROOT on r and v in
order to Þnd the roots r′ and v′, respectively, of their trees in the disjoint-set
forest. As we saw in part (c), these FIND-ROOT calls also perform path com-
pression and update pseudodistances on the Þnd paths from r and v. We then
call FIND-DEPTH(v), saving the depth of v in the variable z. (Since we have
just compressed v�s Þnd path, this call of FIND-DEPTH takes O(1) time.) Next,
we emulate the action of LINK, by making the root (r′ or v′) of smaller rank a
child of the root of larger rank; in case of a tie, we make r′ a child of v′.
If v′ has the smaller rank, then all nodes in r�s tree will have their depths in-
creased by the depth of v plus 1 (because r is to become a child of v). Altering
the psuedodistance of the root of a disjoint-set tree changes the computed depth
of all nodes in that tree, and so adding z + 1 to d[r′] accomplishes this update
for all nodes in r�s disjoint-set tree. Since v′ will become a child of r′ in the
disjoint-set forest, we have just increased the computed depth of all nodes in
the disjoint-set tree rooted at v′ by d[r ′]. These computed depths should not
have changed, however. Thus, we subtract off d[r′] from d[v′], so that the sum
d[v′]+ d[r ′] after making v′ a child of r ′ equals d[v′] before making v′ a child
of r ′.
On the other hand, if r′ has the smaller rank, or if the ranks are equal, then r′
becomes a child of v′ in the disjoint-set forest. In this case, v′ remains a root
in the disjoint-set forest afterward, and we can leave d[v′] alone. We have to
update d[r ′], however, so that after making r′ a child of v′, the depth of each
node in r�s disjoint-set tree is increased by z+ 1. We add z+ 1 to d[r′], but we

Solutions for Chapter 21: Data Structures for Disjoint Sets 21-13

also subtract out d[v′], since we have just made r′ a child of v′. Finally, if the
ranks of r ′ and v′ are equal, we increment the rank of v′, as is done in the LINK

procedure.

e. The asymptotic running times of MAKE-TREE, FIND-DEPTH, and GRAFT are
equivalent to those of MAKE-SET, FIND-SET, and UNION, respectively. Thus,
a sequence of m operations, n of which are MAKE-TREE operations, takes
�(m α(n)) time in the worst case.

Lecture Notes for Chapter 22:
Elementary Graph Algorithms

Graph representation

Given graph G = (V, E).
• May be either directed or undirected.
• Two common ways to represent for algorithms:

1. Adjacency lists.
2. Adjacency matrix.

When expressing the running time of an algorithm, it�s often in terms of both|V |
and |E |. In asymptotic notation�and only in asymptotic notation�we�ll drop the
cardinality. Example: O(V + E).

[The introduction to Part VI talks more about this.]

Adjacency lists

Array Adj of |V | lists, one per vertex.

Vertex u�s list has all vertices v such that (u, v) ∈ E . (Works for both directed and
undirected graphs.)

Example: For an undirected graph:

1 2

3

45

1

2

3

4

5

2 5

1

2

2

4 1 2

5 3

4

5

Adj

4 3

If edges have weights, can put the weights in the lists.

Weight: w : E → R
We�ll use weights later on for spanning trees and shortest paths.

Space: �(V + E).

Time: to list all vertices adjacent to u: �(degree(u)).

Time: to determine if (u, v) ∈ E : O(degree(u)).

22-2 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Example: For a directed graph:

1 2

3

1

2

3

4

2

4

1 2

4

Adj

34

Same asymptotic space and time.

Adjacency matrix

|V | × |V | matrix A = (aij)

aij =
{

1 if (i, j) ∈ E ,

0 otherwise .

1 0 0 1

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

0

1

0

0

1

1 2 3 4 5

1

2

3

4

5

1 0 0

0 0 1

1 0 0

0 1 1

0

0

1

0

1 2 3 4

1

2

3

4

Space: �(V 2).

Time: to list all vertices adjacent to u: �(V).

Time: to determine if (u, v) ∈ E : �(1).

Can store weights instead of bits for weighted graph.

We�ll use both representations in these lecture notes.

Breadth-Þrst search

Input: Graph G = (V, E), either directed or undirected, and source vertex s ∈ V .

Output: d[v] = distance (smallest # of edges) from s to v, for all v ∈ V .
In book, also π [v] = u such that (u, v) is last edge on shortest path s � v.

• u is v�s predecessor.
• set of edges {(π [v], v) : v �= s} forms a tree.

Later, we�ll see a generalization of breadth-Þrst search, with edge weights. For
now, we�ll keep it simple.

• Compute only d[v], not π [v]. [See book for π [v].]
• Omitting colors of vertices. [Used in book to reason about the algorithm. We�ll

skip them here.]

Lecture Notes for Chapter 22: Elementary Graph Algorithms 22-3

Idea: Send a wave out from s.

• First hits all vertices 1 edge from s.
• From there, hits all vertices 2 edges from s.
• Etc.

Use FIFO queue Q to maintain wavefront.

• v ∈ Q if and only if wave has hit v but has not come out of v yet.

BFS(V, E, s)

for each u ∈ V − {s}
do d[u] ←∞

d[s] ← 0
Q ← ∅
ENQUEUE(Q, s)
while Q �= ∅

do u ← DEQUEUE(Q)

for each v ∈ Adj[u]
do if d[v] = ∞

then d[v] ← d[u]+ 1
ENQUEUE(Q, v)

Example: directed graph [undirected example in book] .

a

b

s

e

c

i

g

h

f
0

1

3

2

1

2

3

3

3

Can show that Q consists of vertices with d values.

i i i . . . i i + 1 i + 1 . . . i + 1

• Only 1 or 2 values.
• If 2, differ by 1 and all smallest are Þrst.

Since each vertex gets a Þnite d value at most once, values assigned to vertices are
monotonically increasing over time.

Actual proof of correctness is a bit trickier. See book.

BFS may not reach all vertices.

Time = O(V + E).

• O(V) because every vertex enqueued at most once.
• O(E) because every vertex dequeued at most once and we examine (u, v) only

when u is dequeued. Therefore, every edge examined at most once if directed,
at most twice if undirected.

22-4 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Depth-Þrst search

Input: G = (V, E), directed or undirected. No source vertex given!

Output: 2 timestamps on each vertex:

• d[v] = discovery time
• f [v] = Þnishing time
These will be useful for other algorithms later on.

Can also compute π [v]. [See book.]

Will methodically explore every edge.

• Start over from different vertices as necessary.

As soon as we discover a vertex, explore from it.

• Unlike BFS, which puts a vertex on a queue so that we explore from it later.

As DFS progresses, every vertex has a color:

• WHITE = undiscovered
• GRAY = discovered, but not Þnished (not done exploring from it)
• BLACK = Þnished (have found everything reachable from it)

Discovery and Þnish times:

• Unique integers from 1 to 2 |V |.
• For all v, d[v] < f [v].

In other words, 1 ≤ d[v] < f [v] ≤ 2 |V |.
Pseudocode: Uses a global timestamp time.

DFS(V, E)

for each u ∈ V
do color[u] ← WHITE

time ← 0
for each u ∈ V

do if color[u] = WHITE

then DFS-VISIT(u)

DFS-VISIT(u)

color[u] ← GRAY � discover u
time ← time+1
d[u] ← time
for each v ∈ Adj[u] � explore (u, v)

do if color[v] = WHITE

then DFS-VISIT(v)

color[u] ← BLACK

time ← time+1
f [u] ← time � Þnish u

Lecture Notes for Chapter 22: Elementary Graph Algorithms 22-5

Example: [Go through this example, adding in the d and f values as they�re com-
puted. Show colors as they change. Don�t put in the edge types yet.]

121

43

118

65

1613

1514

72 109

T

T

T

T

T

TB F

C C

C

C

C

C

d f

Time = �(V + E).

• Similar to BFS analysis.
• �, not just O, since guaranteed to examine every vertex and edge.

DFS forms a depth-Þrst forest comprised of > 1 depth-Þrst trees. Each tree is
made of edges (u, v) such that u is gray and v is white when (u, v) is explored.

Theorem (Parenthesis theorem)
[Proof omitted.]

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither of u
and v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

So d[u] < d[v] < f [u] < f [v] cannot happen.

Like parentheses:

• OK: () [] ([]) [()]
• Not OK: ([)] [(])

Corollary
v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u].

Theorem (White-path theorem)
[Proof omitted.]

v is a descendant of u if and only if at time d[u], there is a path u � v consisting
of only white vertices. (Except for u, which was just colored gray.)

22-6 Lecture Notes for Chapter 22: Elementary Graph Algorithms

ClassiÞcation of edges

• Tree edge: in the depth-Þrst forest. Found by exploring (u, v).
• Back edge: (u, v), where u is a descendant of v.
• Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
• Cross edge: any other edge. Can go between vertices in same depth-Þrst tree

or in different depth-Þrst trees.

[Now label the example from above with edge types.]

In an undirected graph, there may be some ambiguity since (u, v) and (v, u) are
the same edge. Classify by the Þrst type above that matches.

Theorem
[Proof omitted.]

In DFS of an undirected graph, we get only tree and back edges. No forward or
cross edges.

Topological sort

Directed acyclic graph (dag)

A directed graph with no cycles.

Good for modeling processes and structures that have a partial order:

• a > b and b > c ⇒ a > c.
• But may have a and b such that neither a > b nor b > c.

Can always make a total order (either a > b or b > a for all a �= b) from a partial
order. In fact, that�s what a topological sort will do.

Example: dag of dependencies for putting on goalie equipment: [Leave on board,
but show without discovery and Þnish times. Will put them in later.]

shorts

17/22 pants

T-shirt

leg pads

hose

socks

16/23

25/26 15/24

skates18/21

19/20

batting glove

chest pad

sweater

mask

catch glove

7/14

8/13

9/12

10/11

2/5

blocker3/4

1/6

Lecture Notes for Chapter 22: Elementary Graph Algorithms 22-7

Lemma
A directed graph G is acyclic if and only if a DFS of G yields no back edges.

Proof ⇒ : Show that back edge ⇒ cycle.

Suppose there is a back edge (u, v). Then v is ancestor of u in depth-Þrst forest.

v

B

T

T

T

u

Therefore, there is a path v � u, so v � u → v is a cycle.

⇐ : Show that cycle ⇒ back edge.

Suppose G contains cycle c. Let v be the Þrst vertex discovered in c, and let (u, v)

be the preceding edge in c. At time d[v], vertices of c form a white path v � u
(since v is the Þrst vertex discovered in c). By white-path theorem, u is descendant
of v in depth-Þrst forest. Therefore, (u, v) is a back edge. (lemma)

Topological sort of a dag: a linear ordering of vertices such that if (u, v) ∈ E ,
then u appears somewhere before v. (Not like sorting numbers.)

TOPOLOGICAL-SORT(V, E)

call DFS(V, E) to compute Þnishing times f [v] for all v ∈ V
output vertices in order of decreasing Þnish times

Don�t need to sort by Þnish times.

• Can just output vertices as they�re Þnished and understand that we want the
reverse of this list.

• Or put them onto the front of a linked list as they�re Þnished. When done, the
list contains vertices in topologically sorted order.

Time: �(V + E).

Do example. [Now write discovery and Þnish times in goalie equipment example.]

22-8 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Order:

26 socks
24 shorts
23 hose
22 pants
21 skates
20 leg pads
14 t-shirt
13 chest pad
12 sweater
11 mask
6 batting glove
5 catch glove
4 blocker

Correctness: Just need to show if (u, v) ∈ E , then f [v] < f [u].
When we explore (u, v), what are the colors of u and v?

• u is gray.
• Is v gray, too?

• No, because then v would be ancestor of u.
⇒ (u, v) is a back edge.
⇒ contradiction of previous lemma (dag has no back edges).

• Is v white?

• Then becomes descendant of u.
By parenthesis theorem, d[u] < d[v] < f [v] < f [u].

• Is v black?

• Then v is already Þnished.
Since we�re exploring (u, v), we have not yet Þnished u.
Therefore, f [v] < f [u].

Strongly connected components

Given directed graph G = (V, E).

A strongly connected component (SCC) of G is a maximal set of vertices C ⊆ V
such that for all u, v ∈ C , both u � v and v � u.

Example: [Just show SCC�s at Þrst. Do DFS a little later.]

14/19 15/16

17/18 13/20

3/4

2/5

1/12

10/11

6/9

7/8

Lecture Notes for Chapter 22: Elementary Graph Algorithms 22-9

Algorithm uses GT = transpose of G.
• GT = (V, ET), ET = {(u, v) : (v, u) ∈ E}.
• GT is G with all edges reversed.

Can create GT in �(V + E) time if using adjacency lists.

Observation: G and GT have the same SCC�s. (u and v are reachable from each
other in G if and only if reachable from each other in GT.)

Component graph

• GSCC = (V SCC, ESCC).
• V SCC has one vertex for each SCC in G.
• ESCC has an edge if there�s an edge between the corresponding SCC�s in G.

For our example:

Lemma
GSCC is a dag. More formally, let C and C′ be distinct SCC�s in G, let u, v ∈ C ,
u′, v′ ∈ C ′, and suppose there is a path u � u′ in G. Then there cannot also be a
path v′ � v in G.

Proof Suppose there is a path v′ � v in G. Then there are paths u � u′ � v′ and
v′ � v � u in G. Therefore, u and v′ are reachable from each other, so they are
not in separate SCC�s. (lemma)

SCC(G)

call DFS(G) to compute Þnishing times f [u] for all u
compute GT

call DFS(GT), but in the main loop, consider vertices in order of decreasing f [u]
(as computed in Þrst DFS)

output the vertices in each tree of the depth-Þrst forest formed in second DFS
as a separate SCC

Example:

1. Do DFS
2. GT

3. DFS (roots blackened)

Time: �(V + E).

How can this possibly work?

22-10 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Idea: By considering vertices in second DFS in decreasing order of Þnishing times
from Þrst DFS, we are visiting vertices of the component graph in topological sort
order.

To prove that it works, Þrst deal with 2 notational issues:

• Will be discussing d[u] and f [u]. These always refer to Þrst DFS.
• Extend notation for d and f to sets of vertices U ⊆ V :

• d(U) = minu∈U {d[u]} (earliest discovery time)
• f (U) = maxu∈U { f [u]} (latest Þnishing time)

Lemma
Let C and C ′ be distinct SCC�s in G = (V, E). Suppose there is an edge (u, v) ∈ E
such that u ∈ C and v ∈ C′.

vuC
C′

Then f (C) > f (C ′).

Proof Two cases, depending on which SCC had the Þrst discovered vertex during
the Þrst DFS.

• If d(C) < d(C ′), let x be the Þrst vertex discovered in C . At time d[x], all
vertices in C and C′ are white. Thus, there exist paths of white vertices from x
to all vertices in C and C′.
By the white-path theorem, all vertices in C and C′ are descendants of x in
depth-Þrst tree.

By the parenthesis theorem, f [x] = f (C) > f (C′).
• If d(C) > d(C ′), let y be the Þrst vertex discovered in C′. At time d[y], all

vertices in C′ are white and there is a white path from y to each vertex in C′ ⇒
all vertices in C′ become descendants of y. Again, f [y] = f (C′).
At time d[y], all vertices in C are white.

By earlier lemma, since there is an edge (u, v), we cannot have a path from C′
to C .

So no vertex in C is reachable from y.

Therefore, at time f [y], all vertices in C are still white.

Therefore, for all w ∈ C , f [w] > f [y], which implies that f (C) > f (C′).
(lemma)

Corollary
Let C and C ′ be distinct SCC�s in G = (V, E). Suppose there is an edge
(u, v) ∈ ET, where u ∈ C and v ∈ C ′. Then f (C) < f (C ′).

Proof (u, v) ∈ ET ⇒ (v, u) ∈ E . Since SCC�s of G and GT are the same,
f (C ′) > f (C). (corollary)

Lecture Notes for Chapter 22: Elementary Graph Algorithms 22-11

Corollary
Let C and C ′ be distinct SCC�s in G = (V, E), and suppose that f (C) > f (C′).
Then there cannot be an edge from C to C′ in GT.

Proof It�s the contrapositive of the previous corollary.

Now we have the intuition to understand why the SCC procedure works.

When we do the second DFS, on GT, start with SCC C such that f (C) is maximum.
The second DFS starts from some x ∈ C , and it visits all vertices in C . Corollary
says that since f (C) > f (C′) for all C ′ �= C , there are no edges from C to C′
in GT.

Therefore, DFS will visit only vertices in C .

Which means that the depth-Þrst tree rooted at x contains exactly the vertices of C .

The next root chosen in the second DFS is in SCC C′ such that f (C′) is maximum
over all SCC�s other than C . DFS visits all vertices in C′, but the only edges out
of C ′ go to C , which we�ve already visited.

Therefore, the only tree edges will be to vertices in C′.
We can continue the process.

Each time we choose a root for the second DFS, it can reach only

• vertices in its SCC�get tree edges to these,
• vertices in SCC�s already visited in second DFS�get no tree edges to these.

We are visiting vertices of (GT)SCC in reverse of topologically sorted order.

[The book has a formal proof.]

Solutions for Chapter 22:
Elementary Graph Algorithms

Solution to Exercise 22.1-6

We start by observing that if aij = 1, so that (i, j) ∈ E , then vertex i cannot be
a universal sink, for it has an outgoing edge. Thus, if row i contains a 1, then
vertex i cannot be a universal sink. This observation also means that if there is a
self-loop (i, i), then vertex i is not a universal sink. Now suppose that aij = 0, so
that (i, j) �∈ E , and also that i �= j . Then vertex j cannot be a universal sink, for
either its in-degree must be strictly less than |V | − 1 or it has a self-loop. Thus
if column j contains a 0 in any position other than the diagonal entry (j, j), then
vertex j cannot be a universal sink.

Using the above observations, the following procedure returns TRUE if vertex k
is a universal sink, and FALSE otherwise. It takes as input a |V | × |V | adjacency
matrix A = (aij).

IS-SINK(A, k)

let A be |V | × |V |
for j ← 1 to |V | � Check for a 1 in row k

do if akj = 1
then return FALSE

for i ← 1 to |V | � Check for an off-diagonal 0 in column k
do if aik = 0 and i �= k

then return FALSE

return TRUE

Because this procedure runs in O(V) time, we may call it only O(1) times in
order to achieve our O(V)-time bound for determining whether directed graph G
contains a universal sink.

Observe also that a directed graph can have at most one universal sink. This prop-
erty holds because if vertex j is a universal sink, then we would have (i, j) ∈ E
for all i �= j and so no other vertex i could be a universal sink.

The following procedure takes an adjacency matrix A as input and returns either a
message that there is no universal sink or a message containing the identity of the
universal sink. It works by eliminating all but one vertex as a potential universal
sink and then checking the remaining candidate vertex by a single call to IS-SINK.

Solutions for Chapter 22: Elementary Graph Algorithms 22-13

UNIVERSAL-SINK(A)

let A be |V | × |V |
i ← j ← 1
while i ≤ |V | and j ≤ |V |

do if aij = 1
then i ← i + 1
else j ← j + 1

s ← 0
if i > |V |
then return �there is no universal sink�

elseif IS-SINK(A, i) = FALSE

then return �there is no universal sink�
else return i �is a universal sink�

UNIVERSAL-SINK walks through the adjacency matrix, starting at the upper left
corner and always moving either right or down by one position, depending on
whether the current entry aij it is examining is 0 or 1. It stops once either i or j
exceeds |V |.
To understand why UNIVERSAL-SINK works, we need to show that after the while
loop terminates, the only vertex that might be a universal sink is vertex i . The call
to IS-SINK then determines whether vertex i is indeed a universal sink.

Let us Þx i and j to be values of these variables at the termination of the while
loop. We claim that every vertex k such that 1 ≤ k < i cannot be a universal sink.
That is because the way that i achieved its Þnal value at loop termination was by
Þnding a 1 in each row k for which 1 ≤ k < i . As we observed above, any vertex k
whose row contains a 1 cannot be a universal sink.

If i > |V | at loop termination, then we have eliminated all vertices from consid-
eration, and so there is no universal sink. If, on the other hand, i ≤ |V | at loop
termination, we need to show that every vertex k such that i < k ≤ |V | cannot
be a universal sink. If i ≤ |V | at loop termination, then the while loop terminated
because j > |V |. That means that we found a 0 in every column. Recall our earlier
observation that if column k contains a 0 in an off-diagonal position, then vertex k
cannot be a universal sink. Since we found a 0 in every column, we found a 0 in
every column k such that i < k ≤ |V |. Moreover, we never examined any matrix
entries in rows greater than i , and so we never examined the diagonal entry in any
column k such that i < k ≤ |V |. Therefore, all the 0s that we found in columns k
such that i < k ≤ |V | were off-diagonal. We conclude that every vertex k such
that i < k ≤ |V | cannot be a universal sink.

Thus, we have shown that every vertex less than i and every vertex greater than i
cannot be a universal sink. The only remaining possibility is that vertex i might be
a universal sink, and the call to IS-SINK checks whether it is.

To see that UNIVERSAL-SINK runs in O(V) time, observe that either i or j is
incremented in each iteration of the while loop. Thus, the while loop makes at
most 2 |V | − 1 iterations. Each iteration takes O(1) time, for a total while loop
time of O(V) and, combined with the O(V)-time call to IS-SINK, we get a total
running time of O(V).

22-14 Solutions for Chapter 22: Elementary Graph Algorithms

Solution to Exercise 22.1-7

B BT (i, j) =
∑
e∈E

biebT
ej =

∑
e∈E

bieb je

• If i = j , then bieb je = 1 (it is 1 · 1 or (−1) · (−1)) whenever e enters or leaves
vertex i , and 0 otherwise.

• If i �= j , then bieb je = −1 when e = (i, j) or e = (j, i), and 0 otherwise.

Thus,

B BT (i, j) =
{

degree of i = in-degree + out-degree if i = j ,

−(# of edges connecting i and j) if i �= j .

Solution to Exercise 22.2-4

The correctness proof for the BFS algorithm shows that d[u] = δ(s, u), and the
algorithm doesn�t assume that the adjacency lists are in any particular order.

In Figure 22.3, if t precedes x in Adj[w], we can get the breadth-Þrst tree shown
in the Þgure. But if x precedes t in Adj[w] and u precedes y in Adj[x], we can get
edge (x, u) in the breadth-Þrst tree.

Solution to Exercise 22.2-5

The edges in Eπ are shaded in the following graph:

s

u w

v x

To see that Eπ cannot be a breadth-Þrst tree, let�s suppose that Adj[s] contains u
before v. BFS adds edges (s, u) and (s, v) to the breadth-Þrst tree. Since u is
enqueued before v, BFS then adds edges (u, w) and (u, x). (The order of w and x
in Adj[u] doesn�t matter.) Symmetrically, if Adj[s] contains v before u, then BFS
adds edges (s, v) and (s, u) to the breadth-Þrst tree, v is enqueued before u, and
BFS adds edges (v,w) and (v, x). (Again, the order of w and x in Adj[v] doesn�t
matter.) BFS will never put both edges (u, w) and (v, x) into the breadth-Þrst tree.
In fact, it will also never put both edges (u, x) and (v,w) into the breadth-Þrst tree.

Solution to Exercise 22.2-6

Create a graph G where each vertex represents a wrestler and each edge represents
a rivalry. The graph will contain n vertices and r edges.

Solutions for Chapter 22: Elementary Graph Algorithms 22-15

Perform as many BFS�s as needed to visit all vertices. Assign all wrestlers whose
distance is even to be good guys and all wrestlers whose distance is odd to be bad
guys. Then check each edge to verify that it goes between a good guy and a bad
guy. This solution would take O(n + r) time for the BFS, O(n) time to designate
each wrestler as a good guy or bad guy, and O(r) time to check edges, which is
O(n + r) time overall.

Solution to Exercise 22.3-4

a. Edge (u, v) is a tree edge or forward edge if and only if v is a descendant of u
in the depth-Þrst forest. (If (u, v) is a back edge, then u is a descendant of v,
and if (u, v) is a cross edge, then neither of u or v is a descendant of the other.)
By Corollary 22.8, therefore, (u, v) is a tree edge or forward edge if and only if
d[u] < d[v] < f [v] < f [u].

b. First, suppose that (u, v) is a back edge. A self-loop is by deÞnition a back
edge. If (u, v) is a self-loop, then clearly d[v] = d[u] < f [u] = f [v]. If (u, v)

is not a self-loop, then u is a descendant of v in the depth-Þrst forest, and by
Corollary 22.8, d[v] < d[u] < f [u] < f [v].

Now, suppose that d[v] ≤ d[u] < f [u] ≤ f [v]. If u and v are the same
vertex, then d[v] = d[u] < f [u] = f [v], and (u, v) is a self-loop and hence
a back edge. If u and v are distinct, then d[v] < d[u] < f [u] < f [v]. By
Theorem 22.7, interval [d[u], f [u]] is contained entirely within the interval
[d[v], f [v]], and u is a descendant of v in a depth-Þrst tree. Thus, (u, v) is a
back edge.

c. First, suppose that (u, v) is a cross edge. Since neither u nor v is an ancestor
of the other, Theorem 22.7 says that the intervals [d[u], f [u]] and [d[v], f [v]]
are entirely disjoint. Thus, we must have either d[u] < f [u] < d[v] < f [v]
or d[v] < f [v] < d[u] < f [u]. We claim that we cannot have d[u] < d[v] if
(u, v) is a cross edge. Why? If d[u] < d[v], then v is white at time d[u]. By
Theorem 22.9, v is a descendant of u, which contradicts (u, v) being a cross
edge. Thus, we must have d[v] < f [v] < d[u] < f [u].

Now suppose that d[v] < f [v] < d[u] < f [u]. By Theorem 22.7, neither u
nor v is a descendant of the other, which means that (u, v) must be a cross edge.

Solution to Exercise 22.3-7

Let us consider the example graph and depth-Þrst search below.

d f
w 1 6
u 2 3
v 4 5

u v

w

22-16 Solutions for Chapter 22: Elementary Graph Algorithms

Clearly, there is a path from u to v in G. The bold edges are in the depth-Þrst
forest produced. We can see that d[u] < d[v] in the depth-Þrst search but v is not
a descendant of u in the forest.

Solution to Exercise 22.3-8

Let us consider the example graph and depth-Þrst search below.

d f
w 1 6
u 2 3
v 4 5

u v

w

Clearly, there is a path from u to v in G. The bold edges of G are in the depth-Þrst
forest produced by the search. However, d[v] > f [u] and the conjecture is false.

Solution to Exercise 22.3-10

Let us consider the example graph and depth-Þrst search below.

d f
w 1 2
u 3 4
v 5 6

w vu

Clearly u has both incoming and outgoing edges in G but a depth-Þrst search of G
produced a depth-Þrst forest where u is in a tree by itself.

Solution to Exercise 22.3-11

Compare the following pseudocode to the pseudocode of DFS on page 541 of the
book. Changes were made in order to assign the desired cc label to vertices.

DFS(G)

for each vertex u ∈ V [G]
do color[u] ← WHITE

π [u] ← NIL

time ← 0
counter ← 0
for each vertex u ∈ V [G]

do if color[u] = WHITE

then counter ← counter+1
DFS-VISIT(u, counter)

Solutions for Chapter 22: Elementary Graph Algorithms 22-17

DFS-VISIT(u, counter)

color[u] ← GRAY

cc[u] ← counter � Label the vertex.
time ← time+1
d[u] ← time
for each v ∈ Adj[u]

do if color[v] = WHITE

then π [v] ← u
DFS-VISIT(v, counter)

color[u] ← BLACK

f [u] ← time ← time+1

This DFS increments a counter each time DFS-VISIT is called to grow a new tree
in the DFS forest. Every vertex visited (and added to the tree) by DFS-VISIT is
labeled with that same counter value. Thus cc[u] = cc[v] if and only if u and v are
visited in the same call to DFS-VISIT from DFS, and the Þnal value of the counter
is the number of calls that were made to DFS-VISIT by DFS. Also, since every
vertex is visited eventually, every vertex is labeled.
Thus all we need to show is that the vertices visited by each call to DFS-VISIT

from DFS are exactly the vertices in one connected component of G.
• All vertices in a connected component are visited by one call to DFS-VISIT

from DFS:

Let u be the Þrst vertex in component C visited by DFS-VISIT. Since a vertex
becomes non-white only when it is visited, all vertices in C are white when
DFS-VISIT is called for u. Thus, by the white-path theorem, all vertices in C
become descendants of u in the forest, which means that all vertices in C are
visited (by recursive calls to DFS-VISIT) before DFS-VISIT returns to DFS.

• All vertices visited by one call to DFS-VISIT from DFS are in the same con-
nected component:

If two vertices are visited in the same call to DFS-VISIT from DFS, they in
the same connected component, because vertices are visited only by following
paths in G (by following edges found in adjacency lists, starting from some
vertex).

Solution to Exercise 22.4-3

An undirected graph is acyclic (i.e., a forest) if and only if a DFS yields no back
edges.
• If there�s a back edge, there�s a cycle.
• If there�s no back edge, then by Theorem 22.10, there are only tree edges.

Hence, the graph is acyclic.

Thus, we can run DFS: if we Þnd a back edge, there�s a cycle.
• Time: O(V). (Not O(V + E)!)

If we ever see |V | distinct edges, we must have seen a back edge because (by
Theorem B.2 on p. 1085) in an acyclic (undirected) forest, |E | ≤ |V | − 1.

22-18 Solutions for Chapter 22: Elementary Graph Algorithms

Solution to Exercise 22.4-5

TOPOLOGICAL-SORT(G)

� Initialize in-degree, �(V) time
for each vertex u ∈ V

do in-degree[u] ← 0
� Compute in-degree, �(V + E) time
for each vertex u ∈ V

do for each v ∈ Adj[u]
do in-degree[v] ← in-degree[v]+ 1

� Initialize Queue, �(V) time
Q ← ∅
for each vertex u ∈ V

do if in-degree[u] = 0
then ENQUEUE(Q, u)

� while loop takes O(V + E) time
while Q �= ∅

do u ← DEQUEUE(Q)

output u
� for loop executes O(E) times total
for each v ∈ Adj[u]

do in-degree[v] ← in-degree[v]− 1
if in-degree[v] = 0
then ENQUEUE(Q, v)

� Check for cycles, O(V) time
for each vertex u ∈ V

do if in-degree[u] �= 0
then report that there�s a cycle

� Another way to check for cycles would be to count the vertices
� that are output and report a cycle if that number is < |V |.
To Þnd and output vertices of in-degree 0, we Þrst compute all vertices� in-degrees
by making a pass through all the edges (by scanning the adjacency lists of all the
vertices) and incrementing the in-degree of each vertex an edge enters.

• This takes �(V + E) time (|V | adjacency lists accessed, |E | edges total found
in those lists, �(1) work for each edge).

We keep the vertices with in-degree 0 in a FIFO queue, so that they can be en-
queued and dequeued in O(1) time. (The order in which vertices in the queue are
processed doesn�t matter, so any kind of queue works.)

• Initializing the queue takes one pass over the vertices doing �(1) work, for
total time �(V).

As we process each vertex from the queue, we effectively remove its outgoing
edges from the graph by decrementing the in-degree of each vertex one of those
edges enters, and we enqueue any vertex whose in-degree goes to 0. There�s

Solutions for Chapter 22: Elementary Graph Algorithms 22-19

no need to actually remove the edges from the adjacency list, because that ad-
jacency list will never be processed again by the algorithm: Each vertex is en-
queued/dequeued at most once because it is enqueued only if it starts out with
in-degree 0 or if its in-degree becomes 0 after being decremented (and never incre-
mented) some number of times.

• The processing of a vertex from the queue happens O(V) times because no
vertex can be enqueued more than once. The per-vertex work (dequeue and
output) takes O(1) time, for a total of O(V) time.

• Because the adjacency list of each vertex is scanned only when the vertex is
dequeued, the adjacency list of each vertex is scanned at most once. Since the
sum of the lengths of all the adjacency lists is �(E), at most O(E) time is spent
in total scanning adjacency lists. For each edge in an adjacency list, �(1) work
is done, for a total of O(E) time.

Thus the total time taken by the algorithm is O(V + E).

The algorithm outputs vertices in the right order (u before v for every edge (u, v))
because v will not be output until its in-degree becomes 0, which happens only
when every edge (u, v) leading into v has been �removed� due to the processing
(including output) of u.

If there are no cycles, all vertices are output.

• Proof: Assume that some vertex v0 is not output. v0 cannot start out with in-
degree 0 (or it would be output), so there are edges into v0. Since v0�s in-degree
never becomes 0, at least one edge (v1, v0) is never removed, which means that
at least one other vertex v1 was not output. Similarly, v1 not output means that
some vertex v2 such that (v2, v1) ∈ E was not output, and so on. Since the
number of vertices is Þnite, this path (· · · → v2 → v1 → v0) is Þnite, so we
must have vi = v j for some i and j in this sequence, which means there is a
cycle.

If there are cycles, not all vertices will be output, because some in-degrees never
become 0.

• Proof: Assume that a vertex in a cycle is output (its in-degree becomes 0). Let v

be the Þrst vertex in its cycle to be output, and let u be v�s predecessor in the
cycle. In order for v�s in-degree to become 0, the edge (u, v) must have been
�removed,� which happens only when u is processed. But this cannot have
happened, because v is the Þrst vertex in its cycle to be processed. Thus no
vertices in cycles are output.

Solution to Exercise 22.5-5

We have at our disposal an O(V + E)-time algorithm that computes strongly con-
nected components. Let us assume that the output of this algorithm is a mapping
scc[u], giving the number of the strongly connected component containing ver-
tex u, for each vertex u. Without loss of generality, assume that scc[u] is an integer
in the set {1, 2, . . . , |V |}.

22-20 Solutions for Chapter 22: Elementary Graph Algorithms

Construct the multiset (a set that can contain the same object more than once)
T = {scc[u] : u ∈ V }, and sort it by using counting sort. Since the values we are
sorting are integers in the range 1 to |V |, the time to sort is O(V). Go through the
sorted multiset T and every time we Þnd an element x that is distinct from the one
before it, add x to VSCC. (Consider the Þrst element of the sorted set as �distinct
from the one before it.�) It takes O(V) time to construct VSCC.

Construct the set of ordered pairs

S = {(x, y) : there is an edge (u, v) ∈ E, x = scc[u], and y = scc[v]} .

We can easily construct this set in �(E) time by going through all edges in E and
looking up scc[u] and scc[v] for each edge (u, v) ∈ E .

Having constructed S, remove all elements of the form (x, x). Alternatively, when
we construct S, do not put an element in S when we Þnd an edge (u, v) for which
scc[u] = scc[v]. S now has at most |E | elements.

Now sort the elements of S using radix sort. Sort on one component at a time. The
order does not matter. In other words, we are performing two passes of counting
sort. The time to do so is O(V + E), since the values we are sorting on are integers
in the range 1 to |V |.
Finally, go through the sorted set S, and every time we Þnd an element (x, y)

that is distinct from the element before it (again considering the Þrst element of
the sorted set as distinct from the one before it), add (x, y) to ESCC. Sorting and
then adding (x, y) only if it is distinct from the element before it ensures that we
add (x, y) at most once. It takes O(E) time to go through S in this way, once S
has been sorted.

The total time is O(V + E).

Solution to Exercise 22.5-6

The basic idea is to replace the edges within each SCC by one simple, directed
cycle and then remove redundant edges between SCC�s. Since there must be at
least k edges within an SCC that has k vertices, a single directed cycle of k edges
gives the k-vertex SCC with the fewest possible edges.

The algorithm works as follows:

1. Identify all SCC�s of G. Time: �(V + E), using the SCC algorithm in Sec-
tion 22.5.

2. Form the component graph GSCC. Time: O(V + E), by Exercise 22.5-5.
3. Start with E ′ = ∅. Time: O(1).
4. For each SCC of G, let the vertices in the SCC be v1, v2, . . . , vk , and add to E ′

the directed edges (v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1). These edges form
a simple, directed cycle that includes all vertices of the SCC. Time for all
SCC�s: O(V).

5. For each edge (u, v) in the component graph GSCC, select any vertex x in u�s
SCC and any vertex y in v�s SCC, and add the directed edge (x, y) to E′.
Time: O(E).

Thus, the total time is �(V + E).

Solutions for Chapter 22: Elementary Graph Algorithms 22-21

Solution to Exercise 22.5-7

To determine if G = (V, E) is semiconnected, do the following:

1. Call STRONGLY-CONNECTED-COMPONENTS.

2. Form the component graph. (By Exercise 22.5-5, you may assume that this
takes O(V + E) time.)

3. Topologically sort the component graph. (Recall that it�s a dag.) Assuming that
there are k SCC�s, the topological sort gives a linear ordering 〈v1, v2, . . . , vk〉
of the vertices.

4. Verify that the sequence of vertices 〈v1, v2, . . . , vk〉 given by topological sort
forms a linear chain in the component graph. That is, verify that the edges
(v1, v2), (v2, v3), . . . , (vk−1, vk) exist in the component graph. If the vertices
form a linear chain, then the original graph is semiconnected; otherwise it is
not.

Because we know that all vertices in each SCC are mutually reachable from each
other, it sufÞces to show that the component graph is semiconnected if and only if
it contains a linear chain. We must also show that if there�s a linear chain in the
component graph, it�s the one returned by topological sort.

We�ll Þrst show that if there�s a linear chain in the component graph, then it�s the
one returned by topological sort. In fact, this is trivial. A topological sort has to
respect every edge in the graph. So if there�s a linear chain, a topological sort must
give us the vertices in order.

Now we�ll show that the component graph is semiconnected if and only if it con-
tains a linear chain.

First, suppose that the component graph contains a linear chain. Then for every
pair of vertices u, v in the component graph, there is a path between them. If u
precedes v in the linear chain, then there�s a path u � v. Otherwise, v precedes u,
and there�s a path v � u.

Conversely, suppose that the component graph does not contain a linear chain.
Then in the list returned by topological sort, there are two consecutive vertices vi
and vi+1, but the edge (vi , vi+1) is not in the component graph. Any edges out of vi

are to vertices v j , where j > i + 1, and so there is no path from vi to vi+1 in the
component graph. And since vi+1 follows vi in the topological sort, there cannot be
any paths at all from vi+1 to vi . Thus, the component graph is not semiconnected.

Running time of each step:

1. �(V + E).

2. O(V + E).

3. Since the component graph has at most |V | vertices and at most |E | edges,
O(V + E).

4. Also O(V + E). We just check the adjacency list of each vertex vi in the
component graph to verify that there�s an edge (vi , vi+1). We�ll go through
each adjacency list once.

Thus, the total running time is �(V + E).

22-22 Solutions for Chapter 22: Elementary Graph Algorithms

Solution to Problem 22-1

a. 1. Suppose (u, v) is a back edge or a forward edge in a BFS of an undirected
graph. Then one of u and v, say u, is a proper ancestor of the other (v) in
the breadth-Þrst tree. Since we explore all edges of u before exploring any
edges of any of u�s descendants, we must explore the edge (u, v) at the time
we explore u. But then (u, v) must be a tree edge.

2. In BFS, an edge (u, v) is a tree edge when we set π [v] ← u. But we only do
so when we set d[v] ← d[u] + 1. Since neither d[u] nor d[v] ever changes
thereafter, we have d[v] = d[u]+ 1 when BFS completes.

3. Consider a cross edge (u, v) where, without loss of generality, u is visited
before v. At the time we visit u, vertex v must already be on the queue, for
otherwise (u, v) would be a tree edge. Because v is on the queue, we have
d[v] ≤ d[u] + 1 by Lemma 22.3. By Corollary 22.4, we have d[v] ≥ d[u].
Thus, either d[v] = d[u] or d[v] = d[u]+ 1.

b. 1. Suppose (u, v) is a forward edge. Then we would have explored it while
visiting u, and it would have been a tree edge.

2. Same as for undirected graphs.
3. For any edge (u, v), whether or not it�s a cross edge, we cannot have

d[v] > d[u]+ 1, since we visit v at the latest when we explore edge (u, v).
Thus, d[v] ≤ d[u] + 1.

4. Clearly, d[v] ≥ 0 for all vertices v. For a back edge (u, v), v is an ancestor
of u in the breadth-Þrst tree, which means that d[v] ≤ d[u]. (Note that since
self-loops are considered to be back edges, we could have u = v.)

Solution to Problem 22-3

a. An Euler tour is a single cycle that traverses each edge of G exactly once, but
it might not be a simple cycle. An Euler tour can be decomposed into a set of
edge-disjoint simple cycles, however.

If G has an Euler tour, therefore, we can look at the simple cycles that, together,
form the tour. In each simple cycle, each vertex in the cycle has one entering
edge and one leaving edge. In each simple cycle, therefore, each vertex v has
in-degree(v) = out-degree(v), where the degrees are either 1 (if v is on the
simple cycle) or 0 (if v is not on the simple cycle). Adding the in- and out-
degrees over all edges proves that if G has an Euler tour, then in-degree(v) =
out-degree(v) for all vertices v.

We prove the converse�that if in-degree(v) = out-degree(v) for all vertices v,
then G has an Euler tour�in two different ways. One proof is nonconstructive,
and the other proof will help us design the algorithm for part (b).

First, we claim that if in-degree(v) = out-degree(v) for all vertices v, then we
can pick any vertex u for which in-degree(u) = out-degree(u) ≥ 1 and create
a cycle (not necessarily simple) that contains u. To prove this claim, let us start

Solutions for Chapter 22: Elementary Graph Algorithms 22-23

by placing vertex u on the cycle, and choose any leaving edge of u, say (u, v).
Now we put v on the cycle. Since in-degree(v) = out-degree(v) ≥ 1, we can
pick some leaving edge of v and continue visiting edges and vertices. Each time
we pick an edge, we can remove it from further consideration. At each vertex
other than u, at the time we visit an entering edge, there must be an unvisited
leaving edge, since in-degree(v) = out-degree(v) for all vertices v. The only
vertex for which there might not be an unvisited leaving edge is u, since we
started the cycle by visiting one of u�s leaving edges. Since there�s always a
leaving edge we can visit from all vertices other than u, eventually the cycle
must return to u, thus proving the claim.

The nonconstructive proof proves the contrapositive�that if G does not have
an Euler tour, then in-degree(v) �= out-degree(v) for some vertex v�by con-
tradiction. Choose a graph G = (V, E) that does not have an Euler tour but
has at least one edge and for which in-degree(v) = out-degree(v) for all ver-
tices v, and let G have the fewest edges of any such graph. By the above claim,
G contains a cycle. Let C be a cycle of G with the greatest number of edges,
and let VC be the set of vertices visited by cycle C . By our assumption, C is
not an Euler tour, and so the set of edges E′ = E − C is nonempty. If we use
the set V of vertices and the set E′ of edges, we get the graph G′ = (V, E ′);
this graph has in-degree(v) = out-degree(v) for all vertices v, since we have
removed one entering edge and one leaving edge for each vertex on cycle C .
Consider any component G′′ = (V ′′, E ′′) of G′, and observe that G′′ also has
in-degree(v) = out-degree(v) for all vertices v. Since E′′ ⊆ E ′ � E , it follows
from how we chose G that G′′ must have an Euler tour, say C′. Because the
original graph G is connected, there must be some vertex x ∈ V′′ ∪ VC and,
without loss of generality, consider x to be the Þrst and last vertex on both C
and C ′. But then the cycle C′′ formed by Þrst traversing C and then travers-
ing C ′ is a cycle of G with more edges than C , contradicting our choice of C .
We conclude that C must have been an Euler tour.

The constructive proof uses the same ideas. Let us start at a vertex u and, via
random traversal of edges, create a cycle. We know that once we take any edge
entering a vertex v �= u, we can Þnd an edge leaving v that we have not yet
taken. Eventually, we get back to vertex u, and if there are still edges leaving u
that we have not taken, we can continue the cycle. Eventually, we get back to
vertex u and there are no untaken edges leaving u. If we have visited every
edge in the graph G, we are done. Otherwise, since G is connected, there must
be some unvisited edge leaving a vertex, say v, on the cycle. We can traverse
a new cycle starting at v, visiting only previously unvisited edges, and we can
splice this cycle into the cycle we already know. That is, if the original cycle
is 〈u, . . . , v, w, . . . , u〉, and the new cycle is 〈v, x, . . . , v〉, then we can create
the cycle 〈u, . . . , v, x, . . . , v, w, . . . , u〉. We continue this process of Þnding a
vertex with an unvisited leaving edge on a visited cycle, visiting a cycle starting
and ending at this vertex, and splicing in the newly visited cycle, until we have
visited every edge.

b. The algorithm is based on the idea in the constructive proof above.

We assume that G is represented by adjacency lists, and we work with a copy
of the adjacency lists, so that as we visit each edge, we can remove it from

22-24 Solutions for Chapter 22: Elementary Graph Algorithms

its adjacency list. The singly linked form of adjacency list will sufÞce. The
output of this algorithm is a doubly linked list T of vertices which, read in list
order, will give an Euler tour. The algorithm constructs T by Þnding cycles
(also represented by doubly linked lists) and splicing them into T . By using
doubly linked lists for cycles and the Euler tour, splicing a cycle into the Euler
tour takes constant time.

We also maintain a singly linked list L in which each list element consists of
two parts:

1. a vertex v, and
2. a pointer to some appearance of v in T .

Initially, L contains one vertex, which may be any vertex of G.

Here is the algorithm:

EULER-TOUR(G)

T ← empty list
L ← (any vertex v, NIL)

while L is not empty
do remove (v, location-in-T) from L

C ← VISIT(v)

if location-in-T = NIL

then T ← C
else splice C into T just before location-in-T

return T

VISIT(v)

C ← empty sequence of vertices
u ← v

while out-degree(u) > 0
do let w be the Þrst vertex in Adj[u]

remove w from Adj[u], decrementing out-degree(u)

add u onto the end of C
if out-degree(u) > 0
then add (u, u�s location in C) to L

u ← w

return C

The use of NIL in the initial assignment to L ensures that the Þrst cycle C
returned by VISIT becomes the current version of the Euler tour T . All cycles
returned by VISIT thereafter are spliced into T . We assume that whenever an
empty cycle is returned by VISIT, splicing it into T leaves T unchanged.

Each time EULER-TOUR removes a vertex v from the list L , it calls VISIT(v)

to Þnd a cycle C , possibly empty and possibly not simple, that starts and ends
at v; the cycle C is represented by a list that starts with v and ends with the last
vertex on the cycle before the cycle ends at v. EULER-TOUR then splices this
cycle C into the Euler tour T just before some appearance of v in T .

When VISIT is at a vertex u, it looks for some vertex w such that the edge (u, w)

has not yet been visited. Removing w from Adj[u] ensures that we will never

Solutions for Chapter 22: Elementary Graph Algorithms 22-25

visit (u, w) again. VISIT adds u onto the cycle C that it constructs. If, after
removing edge (u, w), vertex u still has any leaving edges, then u, along with
its location in C , is added to L . The cycle construction continues from w, and
it ceases once a vertex with no unvisited leaving edges is found. Using the
argument from part (a), at that point, this vertex must close up a cycle. At that
point, therefore, the cycle C is returned.

It is possible that a vertex u has unvisited leaving edges at the time it is added to
list L in VISIT, but that by the time that u is removed from L in EULER-TOUR,
all of its leaving edges have been visited. In this case, the while loop of VISIT

executes 0 iterations, and VISIT returns an empty cycle.

Once the list L is empty, every edge has been visited. The resulting cycle T is
then an Euler tour.

To see that EULER-TOUR takes O(E) time, observe that because we remove
each edge from its adjacency list as it is visited, no edge is visited more than
once. Since each edge is visited at some time, the number of times that a vertex
is added to L , and thus removed from L , is at most |E |. Thus, the while loop in
EULER-TOUR executes at most E iterations. The while loop in VISIT executes
one iteration per edge in the graph, and so it executes at most E iterations as
well. Since adding vertex u to the doubly linked list C takes constant time and
splicing C into T takes constant time, the entire algorithm takes O(E) time.

Here is a variation on EULER-TOUR, which may be a bit simpler to reason
about. It maintains a pointer u to a vertex on the Euler tour, with the invariant
that all vertices on the Euler tour behind u have already had all entering and
leaving edges added to the tour. This variation calls the same procedure VISIT

as above.

EULER-TOUR ′(G)

v ← any vertex
T ← VISIT(v)

mark v�s position as the starting vertex in T
u ← next[v]
while u�s position in T �= v�s position in T

do C ← VISIT(u)

splice C into T , just before u�s position
� If C was empty, T has not changed.
� If C was nonempty, then it began with u
u ← next[next[prev[u]]]
� If C was empty, u now points to the next vertex on T
� If C was nonempty, u now points to the next vertex on C

(which has been spliced into T)
return T

Whenever we return from calling VISIT(u), we know that out-degree(u) = 0,
which means that we have visited all edges entering or leaving vertex u. Since
VISIT adds each edge it visits to the cycle C , which is then added to the Euler
tour T , when we return from a call to VISIT(u), all edges entering or leaving
vertex u have been added to the tour. When we advance the pointer u in the

22-26 Solutions for Chapter 22: Elementary Graph Algorithms

while loop, we need to ensure that it is advanced according to the current tour T ,
which may have just had a cycle C spliced into it. That�s why we advance u by
the expression next[next[prev[u]]], rather than just simply next[u].

Since the graph G is connected, every edge will eventually be visited and added
to the tour T . As before, each edge is visited exactly once, so that at completion,
T will consist of exactly |E | edges. Once a vertex u has had VISIT called on
it, any future call of VISIT(u) will take O(1) time, and so the total time for all
calls to VISIT is O(E).

Solution to Problem 22-4

Compute GT in the usual way, so that GT is G with its edges reversed. Then do
a depth-Þrst search on GT, but in the main loop of DFS, consider the vertices in
order of increasing values of L(v). If vertex u is in the depth-Þrst tree with root v,
then min(u) = v. Clearly, this algorithm takes O(V + E) time.

To show correctness, Þrst note that if u is in the depth-Þrst tree rooted at v in GT,
then there is a path v � u in GT, and so there is a path u � v in G. Thus, the
minimum vertex label of all vertices reachable from u is at most L(v), or in other
words, L(v) ≥ min {L(w) : w ∈ R(u)}.
Now suppose that L(v) > min {L(w) : w ∈ R(u)}, so that there is a vertex
w ∈ R(u) such that L(w) < L(v). At the time d[v] that we started the depth-
Þrst search from v, we would have already discovered w, so that d[w] < d[v].
By the parenthesis theorem, either the intervals [d[v], f [v]], and [d[w], f [w]] are
disjoint and neither v nor w is a descendant of the other, or we have the ordering
d[w] < d[v] < f [v] < f [w] and v is a descendant of w. The latter case cannot
occur, since v is a root in the depth-Þrst forest (which means that v cannot be a
descendant of any other vertex). In the former case, since d[w] < d[v], we must
have d[w] < f [w] < d[v] < f [v]. In this case, since u is reachable from w

in GT, we would have discovered u by the time f [w], so that d[u] < f [w]. Since
we discovered u during a search that started at v, we have d[v] ≤ d[u]. Thus,
d[v] ≤ d[u] < f [w] < d[v], which is a contradiction. We conclude that no such
vertex w can exist.

Lecture Notes for Chapter 23:
Minimum Spanning Trees

Chapter 23 overview

Problem

• A town has a set of houses and a set of roads.
• A road connects 2 and only 2 houses.
• A road connecting houses u and v has a repair cost w(u, v).
• Goal: Repair enough (and no more) roads such that

1. everyone stays connected: can reach every house from all other houses, and
2. total repair cost is minimum.

Model as a graph:

• Undirected graph G = (V, E).
• Weight w(u, v) on each edge (u, v) ∈ E .
• Find T ⊆ E such that

1. T connects all vertices (T is a spanning tree), and
2. w(T) =

∑
(u,v)∈T

w(u, v) is minimized.

A spanning tree whose weight is minimum over all spanning trees is called a min-
imum spanning tree, orMST.

Example of such a graph [edges in MST are shaded] :

10

12

9

8 8

2

11

9
5

61

7

3 3

b

a

c

d

f

e

g

h

i

In this example, there is more than one MST. Replace edge (e, f) by (c, e). Get a
different spanning tree with the same weight.

23-2 Lecture Notes for Chapter 23: Minimum Spanning Trees

Growing a minimum spanning tree

Some properties of an MST:

• It has |V | − 1 edges.
• It has no cycles.
• It might not be unique.

Building up the solution

• We will build a set A of edges.
• Initially, A has no edges.
• As we add edges to A, maintain a loop invariant:

Loop invariant: A is a subset of some MST.

• Add only edges that maintain the invariant. If A is a subset of some MST, an
edge (u, v) is safe for A if and only if A ∪ {(u, v)} is also a subset of some
MST. So we will add only safe edges.

Generic MST algorithm

GENERIC-MST(G, w)

A ← ∅
while A is not a spanning tree

do Þnd an edge (u, v) that is safe for A
A ← A ∪ {(u, v)}

return A

Use the loop invariant to show that this generic algorithm works.

Initialization: The empty set trivially satisÞes the loop invariant.

Maintenance: Since we add only safe edges, A remains a subset of some MST.

Termination: All edges added to A are in an MST, so when we stop, A is a span-
ning tree that is also an MST.

Finding a safe edge

How do we Þnd safe edges?

Let�s look at the example. Edge (c, f) has the lowest weight of any edge in the
graph. Is it safe for A = ∅?

Intuitively: Let S ⊂ V be any set of vertices that includes c but not f (so that
f is in V − S). In any MST, there has to be one edge (at least) that connects S
with V − S. Why not choose the edge with minimum weight? (Which would be
(c, f) in this case.)

Some deÞnitions: Let S ⊂ V and A ⊆ E .

Lecture Notes for Chapter 23: Minimum Spanning Trees 23-3

• A cut (S, V − S) is a partition of vertices into disjoint sets V and S − V .
• Edge (u, v) ∈ E crosses cut (S, V − S) if one endpoint is in S and the other is

in V − S.
• A cut respects A if and only if no edge in A crosses the cut.
• An edge is a light edge crossing a cut if and only if its weight is minimum over

all edges crossing the cut. For a given cut, there can be > 1 light edge crossing
it.

Theorem
Let A be a subset of some MST, (S, V − S) be a cut that respects A, and (u, v) be
a light edge crossing (S, V − S). Then (u, v) is safe for A.

Proof Let T be an MST that includes A.

If T contains (u, v), done.

So now assume that T does not contain (u, v). We�ll construct a different MST T′
that includes A ∪ {(u, v)}.
Recall: a tree has unique path between each pair of vertices. Since T is an MST, it
contains a unique path p between u and v. Path p must cross the cut (S, V − S)

at least once. Let (x, y) be an edge of p that crosses the cut. From how we
chose (u, v), must have w(u, v) ≤ w(x, y).

u

v
y

x

S

V�S

[Except for the dashed edge (u, v), all edges shown are in T . A is some subset of
the edges of T , but A cannot contain any edges that cross the cut (S, V − S), since
this cut respects A. Shaded edges are the path p.]

Since the cut respects A, edge (x, y) is not in A.

To form T ′ from T :

• Remove (x, y). Breaks T into two components.
• Add (u, v). Reconnects.

23-4 Lecture Notes for Chapter 23: Minimum Spanning Trees

So T ′ = T − {(x, y)} ∪ {(u, v)}.
T ′ is a spanning tree.

w(T ′) = w(T)− w(x, y)+ w(u, v)

≤ w(T) ,

since w(u, v) ≤ w(x, y). Since T ′ is a spanning tree, w(T ′) ≤ w(T), and T is an
MST, then T ′ must be an MST.

Need to show that (u, v) is safe for A:

• A ⊆ T and (x, y) �∈ A ⇒ A ⊆ T ′.
• A ∪ {(u, v)} ⊆ T ′.
• Since T ′ is an MST, (u, v) is safe for A. (theorem)

So, in GENERIC-MST:

• A is a forest containing connected components. Initially, each component is a
single vertex.

• Any safe edge merges two of these components into one. Each component is a
tree.

• Since an MST has exactly |V | − 1 edges, the for loop iterates |V | − 1 times.
Equivalently, after adding |V |−1 safe edges, we�re down to just one component.

Corollary
If C = (VC, EC) is a connected component in the forest GA = (V, A) and (u, v)

is a light edge connecting C to some other component in GA (i.e., (u, v) is a light
edge crossing the cut (VC, V − VC)), then (u, v) is safe for A.

Proof Set S = VC in the theorem. (corollary)

This naturally leads to the algorithm called Kruskal�s algorithm to solve the
minimum-spanning-tree problem.

Kruskal�s algorithm

G = (V, E) is a connected, undirected, weighted graph. w : E → R.

• Starts with each vertex being its own component.
• Repeatedly merges two components into one by choosing the light edge that

connects them (i.e., the light edge crossing the cut between them).
• Scans the set of edges in monotonically increasing order by weight.
• Uses a disjoint-set data structure to determine whether an edge connects ver-

tices in different components.

Lecture Notes for Chapter 23: Minimum Spanning Trees 23-5

KRUSKAL(V, E, w)

A ← ∅
for each vertex v ∈ V

do MAKE-SET(v)

sort E into nondecreasing order by weight w

for each (u, v) taken from the sorted list
do if FIND-SET(u) �= FIND-SET(v)

then A ← A ∪ {(u, v)}
UNION(u, v)

return A

Run through the above example to see how Kruskal�s algorithm works on it:

(c, f) : safe
(g, i) : safe
(e, f) : safe
(c, e) : reject
(d, h) : safe
(f, h) : safe
(e, d) : reject
(b, d) : safe
(d, g) : safe
(b, c) : reject
(g, h) : reject
(a, b) : safe

At this point, we have only one component, so all other edges will be rejected. [We
could add a test to the main loop of KRUSKAL to stop once |V | − 1 edges have
been added to A.]

Get the shaded edges shown in the Þgure.

Suppose we had examined (c, e) before (e, f). Then would have found (c, e) safe
and would have rejected (e, f).

Analysis

Initialize A: O(1)

First for loop: |V | MAKE-SETs
Sort E : O(E lg E)

Second for loop: O(E) FIND-SETs and UNIONs

• Assuming the implementation of disjoint-set data structure, already seen in
Chapter 21, that uses union by rank and path compression:

O((V + E) α(V))+ O(E lg E) .

• Since G is connected, |E | ≥ |V | − 1 ⇒ O(E α(V))+ O(E lg E).
• α(|V |) = O(lg V) = O(lg E).
• Therefore, total time is O(E lg E).
• |E | ≤ |V |2 ⇒ lg |E | = O(2 lg V) = O(lg V).

23-6 Lecture Notes for Chapter 23: Minimum Spanning Trees

• Therefore, O(E lg V) time. (If edges are already sorted, O(E α(V)), which is
almost linear.)

Prim�s algorithm

• Builds one tree, so A is always a tree.
• Starts from an arbitrary �root� r .
• At each step, Þnd a light edge crossing cut (VA, V − VA), where VA = vertices

that A is incident on. Add this edge to A.

light edge

VA

[Edges of A are shaded.]

How to Þnd the light edge quickly?

Use a priority queue Q:

• Each object is a vertex in V − VA.
• Key of v is minimum weight of any edge (u, v), where u ∈ VA.
• Then the vertex returned by EXTRACT-MIN is v such that there exists u ∈ VA

and (u, v) is light edge crossing (VA, V − VA).
• Key of v is ∞ if v is not adjacent to any vertices in VA.

The edges of A will form a rooted tree with root r :

• r is given as an input to the algorithm, but it can be any vertex.
• Each vertex knows its parent in the tree by the attribute π [v] = parent of v.

π [v] = NIL if v = r or v has no parent.
• As algorithm progresses, A = {(v, π [v]) : v ∈ V − {r} − Q}.
• At termination, VA = V ⇒ Q = ∅, so MST is A = {(v, π [v]) : v ∈ V − {r}}.

Lecture Notes for Chapter 23: Minimum Spanning Trees 23-7

PRIM(V, E, w, r)

Q ← ∅
for each u ∈ V

do key[u] ←∞
π [u] ← NIL

INSERT(Q, u)

DECREASE-KEY(Q, r, 0) � key[r] ← 0
while Q �= ∅

do u ← EXTRACT-MIN(Q)

for each v ∈ Adj[u]
do if v ∈ Q and w(u, v) < key[v]

then π [v] ← u
DECREASE-KEY(Q, v,w(u, v))

Do example from previous graph. [Let a student pick the root.]

Analysis

Depends on how the priority queue is implemented:

• Suppose Q is a binary heap.

Initialize Q and Þrst for loop: O(V lg V)

Decrease key of r : O(lg V)

while loop: |V | EXTRACT-MIN calls ⇒ O(V lg V)

≤ |E | DECREASE-KEY calls ⇒ O(E lg V)

Total: O(E lg V)

• Suppose we could do DECREASE-KEY in O(1) amortized time.

Then ≤ |E | DECREASE-KEY calls take O(E) time altogether ⇒ total time
becomes O(V lg V + E).

In fact, there is a way to do DECREASE-KEY in O(1) amortized time: Fi-
bonacci heaps, in Chapter 20.

Solutions for Chapter 23:
Minimum Spanning Trees

Solution to Exercise 23.1-1

Theorem 23.1 shows this.

Let A be the empty set and S be any set containing u but not v.

Solution to Exercise 23.1-4

A triangle whose edge weights are all equal is a graph in which every edge is a light
edge crossing some cut. But the triangle is cyclic, so it is not a minimum spanning
tree.

Solution to Exercise 23.1-6

Suppose that for every cut of G, there is a unique light edge crossing the cut. Let
us consider two minimum spanning trees, T and T′, of G. We will show that every
edge of T is also in T ′, which means that T and T ′ are the same tree and hence
there is a unique minimum spanning tree.

Consider any edge (u, v) ∈ T . If we remove (u, v) from T , then T becomes
disconnected, resulting in a cut (S, V − S). The edge (u, v) is a light edge crossing
the cut (S, V − S) (by Exercise 23.1-3). Now consider the edge (x, y) ∈ T′ that
crosses (S, V − S). It, too, is a light edge crossing this cut. Since the light edge
crossing (S, V − S) is unique, the edges (u, v) and (x, y) are the same edge. Thus,
(u, v) ∈ T ′. Since we chose (u, v) arbitrarily, every edge in T is also in T′.
Here�s a counterexample for the converse:

x

y

z

1

1

Solutions for Chapter 23: Minimum Spanning Trees 23-9

Here, the graph is its own minimum spanning tree, and so the minimum spanning
tree is unique. Consider the cut ({x} , {y, z}). Both of the edges (x, y) and (x, z)
are light edges crossing the cut, and they are both light edges.

Solution to Exercise 23.1-10

Let w(T) = ∑(x,y)∈T w(x, y). We have w′(T) = w(T) − k. Consider any other
spanning tree T ′, so that w(T) ≤ w(T ′).
If (x, y) �∈ T ′, then w′(T ′) = w(T ′) ≥ w(T) > w′(T).

If (x, y) ∈ T ′, then w′(T ′) = w(T ′)− k ≥ w(T)− k = w′(T).

Either way, w′(T) ≤ w′(T ′), and so T is a minimum spanning tree for weight
function w′.

Solution to Exercise 23.2-4

We know that Kruskal�s algorithm takes O(V) time for initialization, O(E lg E)

time to sort the edges, and O(E α(V)) time for the disjoint-set operations, for a
total running time of O(V + E lg E + E α(V)) = O(E lg E).

If we knew that all of the edge weights in the graph were integers in the range
from 1 to |V |, then we could sort the edges in O(V + E) time using counting
sort. Since the graph is connected, V = O(E), and so the sorting time is re-
duced to O(E). This would yield a total running time of O(V + E + E α(V)) =
O(E α(V)), again since V = O(E), and since E = O(E α(V)). The time to
process the edges, not the time to sort them, is now the dominant term. Knowl-
edge about the weights won�t help speed up any other part of the algorithm, since
nothing besides the sort uses the weight values.

If the edge weights were integers in the range from 1 to W for some constant W ,
then we could again use counting sort to sort the edges more quickly. This time,
sorting would take O(E +W) = O(E) time, since W is a constant. As in the Þrst
part, we get a total running time of O(E α(V)).

Solution to Exercise 23.2-5

The time taken by Prim�s algorithm is determined by the speed of the queue oper-
ations. With the queue implemented as a Fibonacci heap, it takes O(E + V lg V)

time.

Since the keys in the priority queue are edge weights, it might be possible to im-
plement the queue even more efÞciently when there are restrictions on the possible
edge weights.

We can improve the running time of Prim�s algorithm if W is a constant by imple-
menting the queue as an array Q[0 . . W + 1] (using the W + 1 slot for key= ∞),

23-10 Solutions for Chapter 23: Minimum Spanning Trees

where each slot holds a doubly linked list of vertices with that weight as their
key. Then EXTRACT-MIN takes only O(W) = O(1) time (just scan for the Þrst
nonempty slot), and DECREASE-KEY takes only O(1) time (just remove the ver-
tex from the list it�s in and insert it at the front of the list indexed by the new key).
This gives a total running time of O(E), which is the best possible asymptotic time
(since �(E) edges must be processed).

However, if the range of edge weights is 1 to |V |, then EXTRACT-MIN takes
�(V) time with this data structure. So the total time spent doing EXTRACT-MIN

is �(V 2), slowing the algorithm to �(E + V2) = �(V 2). In this case, it is better
to keep the Fibonacci-heap priority queue, which gave the �(E + V lg V) time.

There are data structures not in the text that yield better running times:

• The van Emde Boas data structure (mentioned in the chapter notes for Chapter 6
and the introduction to Part V) gives an upper bound of O(E + V lg lg V) time
for Prim�s algorithm.

• A redistributive heap (used in the single-source shortest-paths algorithm of
Ahuja, Mehlhorn, Orlin, and Tarjan, and mentioned in the chapter notes for
Chapter 24) gives an upper bound of O

(
E + V

√
lg V

)
for Prim�s algorithm.

Solution to Exercise 23.2-7

We start with the following lemma.

Lemma
Let T be a minimum spanning tree of G = (V, E), and consider a graph G′ =
(V ′, E ′) for which G is a subgraph, i.e., V ⊆ V ′ and E ⊆ E ′. Let T = E − T be
the edges of G that are not in T . Then there is a minimum spanning tree of G′ that
includes no edges in T .

Proof By Exercise 23.2-1, there is a way to order the edges of E so that Kruskal�s
algorithm, when run on G, produces the minimum spanning tree T . We will show
that Kruskal�s algorithm, run on G′, produces a minimum spanning tree T ′ that
includes no edges in T . We assume that the edges in E are considered in the same
relative order when Kruskal�s algorithm is run on G and on G′. We Þrst state and
prove the following claim.

Claim
For any pair of vertices u, v ∈ V , if these vertices are in the same set after Kruskal�s
algorithm run on G considers any edge (x, y) ∈ E , then they are in the same set
after Kruskal�s algorithm run on G′ considers (x, y).

Proof of claim Let us order the edges of E by nondecreasing weight as 〈(x1, y1),

(x2, y2), . . . , (xk, yk)〉, where k = |E |. This sequence gives the order in which the
edges of E are considered by Kruskal�s algorithm, whether it is run on G or on G′.
We will use induction, with the inductive hypothesis that if u and v are in the same
set after Kruskal�s algorithm run on G considers an edge (xi , yi), then they are in

Solutions for Chapter 23: Minimum Spanning Trees 23-11

the same set after Kruskal�s algorithm run on G′ considers the same edge. We use
induction on i .

Basis: For the basis, i = 0. Kruskal�s algorithm run on G has not considered
any edges, and so all vertices are in different sets. The inductive hypothesis holds
trivially.

Inductive step:We assume that any vertices that are in the same set after Kruskal�s
algorithm run on G has considered edges 〈(x1, y1), (x2, y2), . . . , (xi−1, yi−1)〉
are in the same set after Kruskal�s algorithm run on G′ has considered the same
edges. When Kruskal�s algorithm runs on G′, after it considers (xi−1, yi−1), it may
consider some edges in E′−E before considering (xi , yi). The edges in E ′−E may
cause UNION operations to occur, but sets are never divided. Hence, any vertices
that are in the same set after Kruskal�s algorithm run on G′ considers (xi−1, yi−1)

are still in the same set when (xi , yi) is considered.

When Kruskal�s algorithm run on G considers (xi , yi), either xi and yi are found
to be in the same set or they are not.

• If Kruskal�s algorithm run on G Þnds xi and yi to be in the same set, then
no UNION operation occurs. The sets of vertices remain the same, and so the
inductive hypothesis continues to hold after considering (xi , yi).

• If Kruskal�s algorithm run on G Þnds xi and yi to be in different sets, then the
operation UNION(xi , yi) will occur. Kruskal�s algorithm run on G′ will Þnd
that either xi and yi are in the same set or they are not. By the inductive hypoth-
esis, when edge (xi , yi) is considered, all vertices in xi �s set when Kruskal�s
algorithm runs on G are in xi �s set when Kruskal�s algorithm runs on G′, and
the same holds for yi . Regardless of whether Kruskal�s algorithm run on G′
Þnds xi and yi to already be in the same set, their sets are united after consider-
ing (xi , yi), and so the inductive hypothesis continues to hold after considering
(xi , yi). (claim)

With the claim in hand, we suppose that some edge (u, v) ∈ T is placed into T′.
That means that Kruskal�s algorithm run on G found u and v to be in the same
set (since (u, v) ∈ T) but Kruskal�s algorithm run on G′ found u and v to be in
different sets (since (u, v) is placed into T′). This fact contradicts the claim, and we
conclude that no edge in T is placed into T′. Thus, by running Kruskal�s algorithm
on G and G′, we demonstrate that there exists a minimum spanning tree of G′ that
includes no edges in T . (lemma)

We use this lemma as follows. Let G′ = (V ′, E ′) be the graph G = (V, E) with
the one new vertex and its incident edges added. Suppose that we have a minimum
spanning tree T for G. We compute a minimum spanning tree for G′ by creating
the graph G′′ = (V ′, E ′′), where E ′′ consists of the edges of T and the edges in
E ′ − E (i.e., the edges added to G that made G′), and then Þnding a minimum
spanning tree T ′ for G′′. By the lemma, there is a minimum spanning tree for G′
that includes no edges of E − T . In other words, G′ has a minimum spanning tree
that includes only edges in T and E′ − E ; these edges comprise exactly the set E′′.
Thus, the the minimum spanning tree T ′ of G′′ is also a minimum spanning tree
of G′.

23-12 Solutions for Chapter 23: Minimum Spanning Trees

Even though the proof of the lemma uses Kruskal�s algorithm, we are not required
to use this algorithm to Þnd T ′. We can Þnd a minimum spanning tree by any
means we choose. Let us use Prim�s algorithm with a Fibonacci-heap priority
queue. Since |V ′| = |V | + 1 and |E ′′| ≤ 2 |V | − 1 (E ′′ contains the |V | − 1
edges of T and at most |V | edges in E ′ − E), it takes O(V) time to construct G′′,
and the run of Prim�s algorithm with a Fibonacci-heap priority queue takes time
O(E ′′ + V ′ lg V ′) = O(V lg V). Thus, if we are given a minimum spanning tree
of G, we can compute a minimum spanning tree of G′ in O(V lg V) time.

Solution to Problem 23-1

a. To see that the minimum spanning tree is unique, observe that since the graph
is connected and all edge weights are distinct, then there is a unique light edge
crossing every cut. By Exercise 23.1-6, the minimum spanning tree is unique.

To see that the second-best minimum spanning tree need not be unique, here is
a weighted, undirected graph with a unique minimum spanning tree of weight 7
and two second-best minimum spanning trees of weight 8:

1

2 4

3 5

minimum
spanning tree

1

2 4

3 5

second-best
minimum

spanning tree

1

2 4

3 5

second-best
minimum

spanning tree

b. Since any spanning tree has exactly |V | − 1 edges, any second-best minimum
spanning tree must have at least one edge that is not in the (best) minimum
spanning tree. If a second-best minimum spanning tree has exactly one edge,
say (x, y), that is not in the minimum spanning tree, then it has the same set of
edges as the minimum spanning tree, except that (x, y) replaces some edge, say
(u, v), of the minimum spanning tree. In this case, T′ = T −{(u, v)}∪{(x, y)},
as we wished to show.

Thus, all we need to show is that by replacing two or more edges of the min-
imum spanning tree, we cannot obtain a second-best minimum spanning tree.
Let T be the minimum spanning tree of G, and suppose that there exists a
second-best minimum spanning tree T ′ that differs from T by two or more
edges. There are at least two edges in T − T ′, and let (u, v) be the edge in
T − T ′ with minimum weight. If we were to add (u, v) to T ′, we would get
a cycle c. This cycle contains some edge (x, y) in T′ − T (since otherwise, T
would contain a cycle).

We claim that w(x, y) > w(u, v). We prove this claim by contradiction,
so let us assume that w(x, y) < w(u, v). (Recall the assumption that
edge weights are distinct, so that we do not have to concern ourselves with
w(x, y) = w(u, v).) If we add (x, y) to T , we get a cycle c′, which contains

Solutions for Chapter 23: Minimum Spanning Trees 23-13

some edge (u′, v′) in T−T ′ (since otherwise, T ′ would contain a cycle). There-
fore, the set of edges T ′′ = T − {(u′, v′)} ∪ {(x, y)} forms a spanning tree, and
we must also have w(u′, v′) < w(x, y), since otherwise T ′′ would be a span-
ning tree with weight less than w(T). Thus, w(u′, v′) < w(x, y) < w(u, v),
which contradicts our choice of (u, v) as the edge in T−T′ of minimum weight.

Since the edges (u, v) and (x, y) would be on a common cycle c if we were
to add (u, v) to T ′, the set of edges T ′ − {(x, y)} ∪ {(u, v)} is a spanning tree,
and its weight is less than w(T ′). Moreover, it differs from T (because it differs
from T ′ by only one edge). Thus, we have formed a spanning tree whose weight
is less than w(T ′) but is not T . Hence, T ′ was not a second-best minimum
spanning tree.

c. We can Þll in max[u, v] for all u, v ∈ V in O(V2) time by simply doing a
search from each vertex u, having restricted the edges visited to those of the
spanning tree T . It doesn�t matter what kind of search we do: breadth-Þrst,
depth-Þrst, or any other kind.

We�ll give pseudocode for both breadth-Þrst and depth-Þrst approaches. Each
approach differs from the pseudocode given in Chapter 22 in that we don�t need
to compute d or f values, and we�ll use the max table itself to record whether a
vertex has been visited in a given search. In particular, max[u, v] = NIL if and
only if u = v or we have not yet visited vertex v in a search from vertex u. Note
also that since we�re visiting via edges in a spanning tree of an undirected graph,
we are guaranteed that the search from each vertex u�whether breadth-Þrst or
depth-Þrst�will visit all vertices. There will be no need to �restart� the search
as is done in the DFS procedure of Section 22.3. Our pseudocode assumes that
the adjacency list of each vertex consists only of edges in the spanning tree T .

Here�s the breadth-Þrst search approach:

BFS-FILL-MAX(T, w)

for each vertex u ∈ V
do for each vertex v ∈ V

do max[u, v] ← NIL

Q ← ∅
ENQUEUE(Q, u)

while Q �= ∅
do x ← DEQUEUE(Q)

for each v ∈ Adj[x]
do if max[u, v] = NIL and v �= u

then if x = u or w(x, v) > max[u, x]
then max[u, v] ← (x, v)

else max[u, v] ← max[u, x]
ENQUEUE(Q, v)

return max

Here�s the depth-Þrst search approach:

23-14 Solutions for Chapter 23: Minimum Spanning Trees

DFS-FILL-MAX(T, w)

for each vertex u ∈ V
do for each vertex v ∈ V

do max[u, v] ← NIL

DFS-FILL-MAX-VISIT(u, u, max)
return max

DFS-FILL-MAX-VISIT(u, x, max)

for each vertex v ∈ Adj[x]
do if max[u, v] = NIL and v �= u

then if x = u or w(x, v) > max[u, x]
then max[u, v] ← (x, v)

else max[u, v] ← max[u, x]
DFS-FILL-MAX-VISIT(u, v, max)

For either approach, we are Þlling in |V | rows of the max table. Since the
number of edges in the spanning tree is |V | − 1, each row takes O(V) time to
Þll in. Thus, the total time to Þll in the max table is O(V2).

d. In part (b), we established that we can Þnd a second-best minimum spanning
tree by replacing just one edge of the minimum spanning tree T by some
edge (u, v) not in T . As we know, if we create spanning tree T′ by replacing
edge (x, y) ∈ T by edge (u, v) �∈ T , then w(T ′) = w(T)−w(x, y)+w(u, v).
For a given edge (u, v), the edge (x, y) ∈ T that minimizes w(T′) is the edge of
maximum weight on the unique path between u and v in T . If we have already
computed the max table from part (c) based on T , then the identity of this edge
is precisely what is stored in max[u, v]. All we have to do is determine an edge
(u, v) �∈ T for which w(max[u, v])− w(u, v) is minimum.

Thus, our algorithm to Þnd a second-best minimum spanning tree goes as fol-
lows:

1. Compute the minimum spanning tree T . Time: O(E+V lg V), using Prim�s
algorithm with a Fibonacci-heap implementation of the priority queue. Since
|E | < |V |2, this running time is O(V2).

2. Given the minimum spanning tree T , compute the max table, as in part (c).
Time: O(V 2).

3. Find an edge (u, v) �∈ T that minimizes w(max[u, v]) − w(u, v). Time:
O(E), which is O(V 2).

4. Having found an edge (u, v) in step 3, return T′ = T−{max[u, v]}∪{(u, v)}
as a second-best minimum spanning tree.

The total time is O(V 2).

Lecture Notes for Chapter 24:
Single-Source Shortest Paths

Shortest paths

How to Þnd the shortest route between two points on a map.

Input:

• Directed graph G = (V, E)

• Weight function w : E → R

Weight of path p = 〈v0, v1, . . . , vk〉
=

k∑
i=1

w(vi−1, vi)

= sum of edge weights on path p .

Shortest-path weight u to v:

δ(u, v) =
{

min
{
w(p) : u

p
� v

}
if there exists a path u � v ,

∞ otherwise .

Shortest path u to v is any path p such that w(p) = δ(u, v).

Example: shortest paths from s

[d values appear inside vertices. Shaded edges show shortest paths.]

6

5

3

s

t x

y z

0

3 9

5 11

2

3

1

6

4 2 7

6

5

3

s

t x

y z

0

3 9

5 11

2

3

1

6

4 2 7

This example shows that the shortest path might not be unique.

It also shows that when we look at shortest paths from one vertex to all other
vertices, the shortest paths are organized as a tree.

Can think of weights as representing any measure that

24-2 Lecture Notes for Chapter 24: Single-Source Shortest Paths

• accumulates linearly along a path,
• we want to minimize.

Examples: time, cost, penalties, loss.

Generalization of breadth-Þrst search to weighted graphs.

Variants

• Single-source: Find shortest paths from a given source vertex s ∈ V to every
vertex v ∈ V .

• Single-destination: Find shortest paths to a given destination vertex.
• Single-pair: Find shortest path from u to v. No way known that�s better in

worst case than solving single-source.
• All-pairs: Find shortest path from u to v for all u, v ∈ V . We�ll see algorithms

for all-pairs in the next chapter.

Negative-weight edges

OK, as long as no negative-weight cycles are reachable from the source.

• If we have a negative-weight cycle, we can just keep going around it, and get
w(s, v) = −∞ for all v on the cycle.

• But OK if the negative-weight cycle is not reachable from the source.
• Some algorithms work only if there are no negative-weight edges in the graph.

We�ll be clear when they�re allowed and not allowed.

Optimal substructure

Lemma
Any subpath of a shortest path is a shortest path.

Proof Cut-and-paste.

u x y v
pux pxy pyv

Suppose this path p is a shortest path from u to v.

Then δ(u, v) = w(p) = w(pux)+ w(pxy)+ w(pyv).

Now suppose there exists a shorter path x
p′xy
� y.

Then w(p′xy) < w(pxy).

Construct p′:

u x y v
pux p'xy pyv

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-3

Then

w(p′) = w(pux)+ w(p′xy)+ w(pyv)

< w(pux)+ w(pxy)+ w(pyv)

= w(p) .

So p wasn�t a shortest path after all! (lemma)

Cycles

Shortest paths can�t contain cycles:

• Already ruled out negative-weight cycles.
• Positive-weight ⇒ we can get a shorter path by omitting the cycle.
• Zero-weight: no reason to use them ⇒ assume that our solutions won�t use

them.

Output of single-source shortest-path algorithm

For each vertex v ∈ V :

• d[v] = δ(s, v).

• Initially, d[v] = ∞.
• Reduces as algorithms progress. But always maintain d[v] ≥ δ(s, v).
• Call d[v] a shortest-path estimate.

• π [v] = predecessor of v on a shortest path from s.

• If no predecessor, π [v] = NIL.
• π induces a tree�shortest-path tree.
• We won�t prove properties of π in lecture�see text.

Initialization

All the shortest-paths algorithms start with INIT-SINGLE-SOURCE.

INIT-SINGLE-SOURCE(V, s)

for each v ∈ V
do d[v] ←∞

π [v] ← NIL

d[s] ← 0

Relaxing an edge (u, v)

Can we improve the shortest-path estimate for v by going through u and taking
(u, v)?

24-4 Lecture Notes for Chapter 24: Single-Source Shortest Paths

RELAX(u, v,w)

if d[v] > d[u]+ w(u, v)

then d[v] ← d[u]+ w(u, v)

π [v] ← u

3 3

RELAX

u v

4 10

4 7

RELAX

4 6

4 6

For all the single-source shortest-paths algorithms we�ll look at,

• start by calling INIT-SINGLE-SOURCE,
• then relax edges.

The algorithms differ in the order and how many times they relax each edge.

Shortest-paths properties

Based on calling INIT-SINGLE-SOURCE once and then calling RELAX zero or
more times.

Triangle inequality

For all (u, v) ∈ E , we have δ(s, v) ≤ δ(s, u)+ w(u, v).

Proof Weight of shortest path s � v is ≤ weight of any path s � v. Path
s � u → v is a path s � v, and if we use a shortest path s � u, its weight is
δ(s, u)+ w(u, v).

Upper-bound property

Always have d[v] ≥ δ(s, v) for all v. Once d[v] = δ(s, v), it never changes.

Proof Initially true.

Suppose there exists a vertex such that d[v] < δ(s, v).

Without loss of generality, v is Þrst vertex for which this happens.

Let u be the vertex that causes d[v] to change.

Then d[v] = d[u]+ w(u, v).

So,

d[v] < δ(s, v)

≤ δ(s, u)+ w(u, v) (triangle inequality)

≤ d[u]+ w(u, v) (v is Þrst violation)

⇒ d[v] < d[u]+ w(u, v) .

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-5

Contradicts d[v] = d[u]+ w(u, v).

Once d[v] reaches δ(s, v), it never goes lower. It never goes up, since relaxations
only lower shortest-path estimates.

No-path property

If δ(s, v) = ∞, then d[v] = ∞ always.

Proof d[v] ≥ δ(s, v) = ∞⇒ d[v] = ∞.

Convergence property

If s � u → v is a shortest path, d[u] = δ(s, u), and we call RELAX(u, v,w), then
d[v] = δ(s, v) afterward.

Proof After relaxation:

d[v] ≤ d[u] + w(u, v) (RELAX code)

= δ(s, u)+ w(u, v)

= δ(s, v) (lemma�optimal substructure)

Since d[v] ≥ δ(s, v), must have d[v] = δ(s, v).

Path relaxation property

Let p = 〈v0, v1, . . . , vk〉 be a shortest path from s = v0 to vk . If we relax,
in order, (v0, v1), (v1, v2), . . . , (vk−1, vk), even intermixed with other relaxations,
then d[vk] = δ(s, vk).

Proof Induction to show that d[vi] = δ(s, vi) after (vi−1, vi) is relaxed.

Basis: i = 0. Initially, d[v0] = 0 = δ(s, v0) = δ(s, s).

Inductive step: Assume d[vi−1] = δ(s, vi−1). Relax (vi−1, vi). By convergence
property, d[vi] = δ(s, vi) afterward and d[vi] never changes.

The Bellman-Ford algorithm

• Allows negative-weight edges.
• Computes d[v] and π [v] for all v ∈ V .
• Returns TRUE if no negative-weight cycles reachable from s, FALSE otherwise.

24-6 Lecture Notes for Chapter 24: Single-Source Shortest Paths

BELLMAN-FORD(V, E, w, s)

INIT-SINGLE-SOURCE(V, s)
for i ← 1 to |V | − 1

do for each edge (u, v) ∈ E
do RELAX(u, v,w)

for each edge (u, v) ∈ E
do if d[v] > d[u] + w(u, v)

then return FALSE

return TRUE

Core: The Þrst for loop relaxes all edges |V | − 1 times.

Time: �(V E).

Example:

s

r

x

yz

0

�1

1

2 �2

�1

4

3

5

2

�3

21

Values you get on each pass and how quickly it converges depends on order of
relaxation.

But guaranteed to converge after |V | − 1 passes, assuming no negative-weight
cycles.

Proof Use path-relaxation property.

Let v be reachable from s, and let p = 〈v0, v1, . . . , vk〉 be a shortest path from s
to v, where v0 = s and vk = v. Since p is acyclic, it has ≤ |V | − 1 edges, so
k ≤ |V | − 1.

Each iteration of the for loop relaxes all edges:

• First iteration relaxes (v0, v1).
• Second iteration relaxes (v1, v2).
• kth iteration relaxes (vk−1, vk).

By the path-relaxation property, d[v] = d[vk] = δ(s, vk) = δ(s, v).

How about the TRUE/FALSE return value?

• Suppose there is no negative-weight cycle reachable from s.

At termination, for all (u, v) ∈ E ,
d[v] = δ(s, v)

≤ δ(s, u)+ w(u, v) (triangle inequality)

= d[u]+ w(u, v) .

So BELLMAN-FORD returns TRUE.

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-7

• Now suppose there exists negative-weight cycle c = 〈v0, v1, . . . , vk〉, where
v0 = vk , reachable from s.

Then
k∑

i=1

(vi−1, vi) < 0 .

Suppose (for contradiction) that BELLMAN-FORD returns TRUE.

Then d[vi] ≤ d[vi−1]+ w(vi−1, vi) for i = 1, 2, . . . , k.

Sum around c:
k∑

i=1

d[vi] ≤
k∑

i=1

(d[vi−1]+ w(vi−1, vi))

=
k∑

i=1

d[vi−1]+
k∑

i=1

w(vi−1, vi)

Each vertex appears once in each summation
∑k

i=1 d[vi] and
∑k

i=1 d[vi−1] ⇒
0 ≤

k∑
i=1

w(vi−1, vi) .

This contradicts c being a negative-weight cycle!

Single-source shortest paths in a directed acyclic graph

Since a dag, we�re guaranteed no negative-weight cycles.

DAG-SHORTEST-PATHS(V, E, w, s)

topologically sort the vertices
INIT-SINGLE-SOURCE(V, s)
for each vertex u, taken in topologically sorted order

do for each vertex v ∈ Adj[u]
do RELAX(u, v,w)

Example:

s t x y z

2

6

2

�2�1

4

2 7

1

0 6 5 3

Time: �(V + E).

Correctness: Because we process vertices in topologically sorted order, edges of
any path must be relaxed in order of appearance in the path.
⇒ Edges on any shortest path are relaxed in order.
⇒ By path-relaxation property, correct.

24-8 Lecture Notes for Chapter 24: Single-Source Shortest Paths

Dijkstra�s algorithm

No negative-weight edges.

Essentially a weighted version of breadth-Þrst search.

• Instead of a FIFO queue, uses a priority queue.
• Keys are shortest-path weights (d[v]).

Have two sets of vertices:

• S = vertices whose Þnal shortest-path weights are determined,
• Q = priority queue = V − S.

DIJKSTRA(V, E, w, s)

INIT-SINGLE-SOURCE(V, s)
S ← ∅
Q ← V � i.e., insert all vertices into Q
while Q �= ∅

do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each vertex v ∈ Adj[u]

do RELAX(u, v,w)

• Looks a lot like Prim�s algorithm, but computing d[v], and using shortest-path
weights as keys.

• Dijkstra�s algorithm can be viewed as greedy, since it always chooses the �light-
est� (�closest�?) vertex in V − S to add to S.

Example:

s

x

y

z

2

3 4

10

1

0

8

5

6

5

Order of adding to S: s, y, z, x .

Correctness:

Loop invariant: At the start of each iteration of the while loop, d[v] =
δ(s, v) for all v ∈ S.

Initialization: Initially, S = ∅, so trivially true.

Termination: At end, Q = ∅ ⇒ S = V ⇒ d[v] = δ(s, v) for all v ∈ V .

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-9

Maintenance: Need to show that d[u] = δ(s, u) when u is added to S in each
iteration.

Suppose there exists u such that d[u] �= δ(s, u). Without loss of generality,
let u be the Þrst vertex for which d[u] �= δ(s, u) when u is added to S.

Observations:

• u �= s, since d[s] = δ(s, s) = 0.
• Therefore, s ∈ S, so S �= ∅.
• There must be some path s � u, since otherwise d[u] = δ(s, u) = ∞ by

no-path property.

So, there�s a path s � u.

This means there�s a shortest path s
p

� u.

Just before u is added to S, path p connects a vertex in S (i.e., s) to a vertex in
V − S (i.e., u).

Let y be Þrst vertex along p that�s in V − S, and let x ∈ S be y�s predecessor.

y
p1

S
s

x
u

p2

Decompose p into s
p1
� x → y

p2
� u. (Could have x = s or y = u, so that p1

or p2 may have no edges.)

Claim
d[y] = δ(s, y) when u is added to S.

Proof x ∈ S and u is the Þrst vertex such that d[u] �= δ(s, u) when u is added
to S ⇒ d[x] = δ(s, x) when x is added to S. Relaxed (x, y) at that time, so by
the convergence property, d[y] = δ(s, y). (claim)

Now can get a contradiction to d[u] �= δ(s, u):

y is on shortest path s � u, and all edge weights are nonnegative
⇒ δ(s, y) ≤ δ(s, u)⇒
d[y] = δ(s, y)

≤ δ(s, u)

≤ d[u] (upper-bound property) .

Also, both y and u were in Q when we chose u, so

d[u] ≤ d[y] ⇒ d[u] = d[y] .

Therefore, d[y] = δ(s, y) = δ(s, u) = d[u].

Contradicts assumption that d[u] �= δ(s, u). Hence, Dijkstra�s algorithm is
correct.

24-10 Lecture Notes for Chapter 24: Single-Source Shortest Paths

Analysis: Like Prim�s algorithm, depends on implementation of priority queue.

• If binary heap, each operation takes O(lg V) time ⇒ O(E lg V).
• If a Fibonacci heap:

• Each EXTRACT-MIN takes O(1) amortized time.
• There are O(V) other operations, taking O(lg V) amortized time each.
• Therefore, time is O(V lg V + E).

Difference constraints

Given a set of inequalities of the form xj − xi ≤ bk .

• x�s are variables, 1 ≤ i, j ≤ n,
• b�s are constants, 1 ≤ k ≤ m.

Want to Þnd a set of values for the x�s that satisfy all m inequalities, or determine
that no such values exist. Call such a set of values a feasible solution.

Example:

x1 − x2 ≤ 5

x1 − x3 ≤ 6

x2 − x4 ≤ −1

x3 − x4 ≤ −2

x4 − x1 ≤ −3

Solution: x = (0,−4,−5,−3)

Also: x = (5, 1, 0, 2) = [above solution] + 5

Lemma
If x is a feasible solution, then so is x + d for any constant d .

Proof x is a feasible solution ⇒ xj − xi ≤ bk for all i, j, k
⇒ (x j + d)− (xi + d) ≤ bk . (lemma)

Constraint graph

G = (V, E), weighted, directed.

• V = {v0, v1, v2, . . . , vn}: one vertex per variable + v0

• E = {(vi , v j) : x j − xi ≤ bk is a constraint} ∪ {(v0, v1), (v0, v2), . . . , (v0, vn)}
• w(v0, v j) = 0 for all j
• w(vi , v j) = bk if x j − xi ≤ bk

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-11

v0

v2

v3

0

0 �4

�3 �5

�3

6

�2

5

�1

v1

v4

0

0

0

0

Theorem
Given a system of difference constraints, let G = (V, E) be the corresponding
constraint graph.

1. If G has no negative-weight cycles, then

x = (δ(v0, v1), δ(v0, v2), . . . , δ(v0, vn))

is a feasible solution.

2. If G has a negative-weight cycle, then there is no feasible solution.

Proof

1. Show no negative-weight cycles ⇒ feasible solution.

Need to show that x j − xi ≤ bk for all constraints. Use

x j = δ(v0, v j)

xi = δ(v0, vi)

bk = w(vi , v j) .

By the triangle inequality,

δ(v0, v j) ≤ δ(v0, vi)+ w(vi , v j)

x j ≤ xi + bk

x j − xi ≤ bk .

Therefore, feasible.

2. Show negative-weight cycles ⇒ no feasible solution.

Without loss of generality, let a negative-weight cycle be c = 〈v1, v2, . . . , vk〉,
where v1 = vk . (v0 can�t be on c, since v0 has no entering edges.) c corresponds
to the constraints

x2 − x1 ≤ w(v1, v2) ,

x3 − x2 ≤ w(v2, v3) ,

...

xk−1 − xk−2 ≤ w(vk−2, vk−1) ,

xk − xk−1 ≤ w(vk−1, vk) .

[The last two inequalities above are incorrect in the Þrst three printings of the
book. They were corrected in the fourth printing.]

If x is a solution satisfying these inequalities, it must satisfy their sum.

So add them up.

24-12 Lecture Notes for Chapter 24: Single-Source Shortest Paths

Each xi is added once and subtracted once. (v1 = vk ⇒ x1 = xk .)

We get 0 ≤ w(c).

But w(c) < 0, since c is a negative-weight cycle.

Contradiction ⇒ no such feasible solution x exists. (theorem)

How to Þnd a feasible solution

1. Form constraint graph.

• n + 1 vertices.
• m + n edges.
• �(m + n) time.

2. Run BELLMAN-FORD from v0.

• O((n + 1)(m + n)) = O(n2 + nm) time.

3. If BELLMAN-FORD returns FALSE ⇒ no feasible solution.

If BELLMAN-FORD returns TRUE ⇒ set xi = δ(v0, vi) for all i .

Solutions for Chapter 24:
Single-Source Shortest Paths

Solution to Exercise 24.1-3

The proof of the convergence property shows that for every vertex v, the shortest-
path estimate d[v] has attained its Þnal value after length (any shortest-weight path
to v) iterations of BELLMAN-FORD. Thus after m passes, BELLMAN-FORD can
terminate. We don�t know m in advance, so we can�t make the algorithm loop
exactly m times and then terminate. But if we just make the algorithm stop when
nothing changes any more, it will stop after m+1 iterations (i.e., after one iteration
that makes no changes).

BELLMAN-FORD-(M+1)(G, w, s)

INITIALIZE-SINGLE-SOURCE(G, s)
changes ← TRUE

while changes = TRUE

do changes ← FALSE

for each edge (u, v) ∈ E[G]
do RELAX-M(u, v,w)

RELAX-M(u, v,w)

if d[v] > d[u]+ w(u, v)

then d[v] ← d[u]+ w(u, v)

π [v] ← u
changes ← TRUE

The test for a negative-weight cycle (based on there being a d that would change
if another relaxation step was done) has been removed above, because this version
of the algorithm will never get out of the while loop unless all d�s stop changing.

Solution to Exercise 24.2-3

We�ll give two ways to transform a PERT chart G = (V, E) with weights on
vertices to a PERT chart G′ = (V ′, E ′) with weights on edges. In each way, we�ll
have that |V ′| ≤ 2 |V | and |E ′| ≤ |V | + |E |. We can then run on G′ the same

24-14 Solutions for Chapter 24: Single-Source Shortest Paths

algorithm to Þnd a longest path through a dag as is given in Section 24.2 of the
text.

In the Þrst way, we transform each vertex v ∈ V into two vertices v′ and v′′ in V ′.
All edges in E that enter v will enter v′ in E ′, and all edges in E that leave v will
leave v′′ in E ′. In other words, if (u, v) ∈ E , then (u′′, v′) ∈ E ′. All such edges
have weight 0. We also put edges (v′, v′′) into E ′ for all vertices v ∈ V , and these
edges are given the weight of the corresponding vertex v in G. Thus,|V ′| = 2 |V |,
|E ′| = |V | + |E |, and the edge weight of each path in G′ equals the vertex weight
of the corresponding path in G.

In the second way, we leave vertices in V alone, but we add one new source vertex s
to V ′, so that V ′ = V ∪ {s}. All edges of E are in E′, and E ′ also includes an
edge (s, v) for every vertex v ∈ V that has in-degree 0 in G. Thus, the only vertex
with in-degree 0 in G′ is the new source s. The weight of edge (u, v) ∈ E′ is the
weight of vertex v in G. In other words, the weight of each entering edge in G′ is
the weight of the vertex it enters in G. In effect, we have �pushed back� the weight
of each vertex onto the edges that enter it. Here, |V ′| = |V | + 1, |E ′| ≤ |V | + |E |
(since no more than |V | vertices have in-degree 0 in G), and again the edge weight
of each path in G′ equals the vertex weight of the corresponding path in G.

Solution to Exercise 24.3-3

Yes, the algorithm still works. Let u be the leftover vertex that does not get ex-
tracted from the priority queue Q. If u is not reachable from s, then d[u] =
δ(s, u) = ∞. If u is reachable from s, there is a shortest path p = s � x → u.
When the node x was extracted, d[x] = δ(s, x) and then the edge (x, u) was re-
laxed; thus, d[u] = δ(s, u).

Solution to Exercise 24.3-4

To Þnd the most reliable path between s and t , run Dijkstra�s algorithm with edge
weights w(u, v) = − lg r(u, v) to Þnd shortest paths from s in O(E+V lg V) time.
The most reliable path is the shortest path from s to t , and that path�s reliability is
the product of the reliabilities of its edges.

Here�s why this method works. Because the probabilities are independent, the
probability that a path will not fail is the product of the probabilities that its edges
will not fail. We want to Þnd a path s

p
� t such that

∏
(u,v)∈p r(u, v) is maximized.

This is equivalent to maximizing lg(
∏

(u,v)∈p r(u, v)) =∑(u,v)∈p lg r(u, v), which
is in turn equivalent to minimizing

∑
(u,v)∈p − lg r(u, v). (Note: r(u, v) can be 0,

and lg 0 is undeÞned. So in this algorithm, deÞne lg 0 = −∞.) Thus if we assign
weights w(u, v) = − lg r(u, v), we have a shortest-path problem.

Since lg 1 = 0, lg x < 0 for 0 < x < 1, and we have deÞned lg 0 = −∞, all the
weights w are nonnegative, and we can use Dijkstra�s algorithm to Þnd the shortest
paths from s in O(E + V lg V) time.

Solutions for Chapter 24: Single-Source Shortest Paths 24-15

Alternate answer

You can also work with the original probabilities by running a modiÞed version of
Dijkstra�s algorithm that maximizes the product of reliabilities along a path instead
of minimizing the sum of weights along a path.

In Dijkstra�s algorithm, use the reliabilities as edge weights and substitute
• max (and EXTRACT-MAX) for min (and EXTRACT-MIN) in relaxation and the

queue,
• × for + in relaxation,
• 1 (identity for ×) for 0 (identity for +) and −∞ (identity for min) for ∞ (iden-

tity for max).

For example, the following is used instead of the usual RELAX procedure:

RELAX-RELIABILITY(u, v, r)

if d[v] < d[u] · r(u, v)

then d[v] ← d[u] · r(u, v)

π [v] ← u

This algorithm is isomorphic to the one above: It performs the same operations
except that it is working with the original probabilities instead of the transformed
ones.

Solution to Exercise 24.3-6

Observe that if a shortest-path estimate is not ∞, then it�s at most (|V | − 1)W .
Why? In order to have d[v] < ∞, we must have relaxed an edge (u, v) with
d[u] < ∞. By induction, we can show that if we relax (u, v), then d[v] is at most
the number of edges on a path from s to v times the maximum edge weight. Since
any acyclic path has at most |V | − 1 edges and the maximum edge weight is W ,
we see that d[v] ≤ (|V | − 1)W . Note also that d[v] must also be an integer, unless
it is ∞.

We also observe that in Dijkstra�s algorithm, the values returned by the EXTRACT-
MIN calls are monotonically increasing over time. Why? After we do our initial
|V | INSERT operations, we never do another. The only other way that a key value
can change is by a DECREASE-KEY operation. Since edge weights are nonneg-
ative, when we relax an edge (u, v), we have that d[u] ≤ d[v]. Since u is the
minimum vertex that we just extracted, we know that any other vertex we extract
later has a key value that is at least d[u].

When keys are known to be integers in the range 0 to k and the key values extracted
are monotonically increasing over time, we can implement a min-priority queue so
that any sequence of m INSERT, EXTRACT-MIN, and DECREASE-KEY operations
takes O(m + k) time. Here�s how. We use an array, say A[0 . . k], where A[j] is
a linked list of each element whose key is j . Think of A[j] as a bucket for all
elements with key j . We implement each bucket by a circular, doubly linked list
with a sentinel, so that we can insert into or delete from each bucket in O(1) time.
We perform the min-priority queue operations as follows:

24-16 Solutions for Chapter 24: Single-Source Shortest Paths

• INSERT: To insert an element with key j , just insert it into the linked list
in A[j]. Time: O(1) per INSERT.

• EXTRACT-MIN: We maintain an index min of the value of the smallest key
extracted. Initially, min is 0. To Þnd the smallest key, look in A[min] and, if this
list is nonempty, use any element in it, removing the element from the list and
returning it to the caller. Otherwise, we rely on the monotonicity property (and
that there is no INCREASE-KEY operation) and increment min until we either
Þnd a list A[min] that is nonempty (using any element in A[min] as before)
or we run off the end of the array A (in which case the min-priority queue is
empty).

Since there are at most m INSERT operations, there are at most m elements in
the min-priority queue. We increment min at most k times, and we remove and
return some element at most m times. Thus, the total time over all EXTRACT-
MIN operations is O(m + k).

• DECREASE-KEY: To decrease the key of an element from j to i , Þrst check
whether i ≤ j , ßagging an error if not. Otherwise, we remove the element
from its list A[j] in O(1) time and insert it into the list A[i] in O(1) time.
Time: O(1) per DECREASE-KEY.

To apply this kind of min-priority queue to Dijkstra�s algorithm, we need to let
k = (|V | − 1)W , and we also need a separate list for keys with value∞. The num-
ber of operations m is O(V + E) (since there are |V | INSERT and |V | EXTRACT-
MIN operations and at most |E | DECREASE-KEY operations), and so the total time
is O(V + E + V W) = O(V W + E).

Solution to Exercise 24.3-7

First, observe that at any time, there are at most W + 2 distinct key values in
the priority queue. Why? A key value is either ∞ or it is not. Consider what
happens whenever a key value d[v] becomes Þnite. It must have occurred due
to the relaxation of an edge (u, v). At that time, u was being placed into S, and
d[u] ≤ d[y] for all vertices y ∈ V − S. After relaxing edge (u, v), we have
d[v] ≤ d[u] + W . Since any other vertex y ∈ V − S with d[y] < ∞ also had its
estimate changed by a relaxation of some edge x with d[x] ≤ d[u], we must have
d[y] ≤ d[x]+W ≤ d[u]+W . Thus, at the time that we are relaxing edges from a
vertex u, we must have, for all vertices v ∈ V − S, that d[u] ≤ d[v] ≤ d[u]+ W
or d[v] = ∞. Since shortest-path estimates are integer values (except for ∞),
at any given moment we have at most W + 2 different ones: d[u], d[u] + 1,

d[u] + 2, . . . , d[u]+ W and ∞.

Therefore, we can maintain the min-priorty queue as a binary min-heap in which
each node points to a doubly linked list of all vertices with a given key value. There
are at most W + 2 nodes in the heap, and so EXTRACT-MIN runs in O(lg W)

time. To perform DECREASE-KEY, we need to be able to Þnd the heap node
corresponding to a given key in O(lg W) time. We can do so in O(1) time as
follows. First, keep a pointer inf to the node containing all the ∞ keys. Second,
maintain an array loc[0 . . W], where loc[i] points to the unique heap entry whose

Solutions for Chapter 24: Single-Source Shortest Paths 24-17

key value is congruent to i (mod (W + 1)). As keys move around in the heap, we
can update this array in O(1) time per movement.

Alternatively, instead of using a binary min-heap, we could use a red-black tree.
Now INSERT, DELETE, MINIMUM, and SEARCH�from which we can construct
the priority-queue operations�each run in O(lg W) time.

Solution to Exercise 24.4-4

Let δ(u) be the shortest-path weight from s to u. Then we want to Þnd δ(t).

δ must satisfy
δ(s) = 0

δ(v)− δ(u) ≤ w(u, v) for all (u, v) ∈ E (Lemma 24.10)
where w(u, v) is the weight of edge (u, v).

Thus xv = δ(v) is a solution to
xs = 0

xv − xu ≤ w(u, v) .

To turn this into a set of inequalities of the required form, replace xs = 0 by xs ≤ 0
and −xs ≤ 0 (i.e., xs ≥ 0). The constraints are now

xs ≤ 0 ,

−xs ≤ 0 ,

xv − xu ≤ w(u, v) ,

which still has xv = δ(v) as a solution.

However, δ isn�t the only solution to this set of inequalities. (For example, if all
edge weights are nonnegative, all xi = 0 is a solution.) To force xt = δ(t) as
required by the shortest-path problem, add the requirement to maximize (the ob-
jective function) xt . This is correct because
• max(xt) ≥ δ(t) because xt = δ(t) is part of one solution to the set of inequali-

ties,
• max(xt) ≤ δ(t) can be demonstrated by a technique similar to the proof of

Theorem 24.9:

Let p be a shortest path from s to t . Then by deÞnition,

δ(t) =
∑

(u,v)∈p

w(u, v) .

But for each edge (u, v) we have the inequality xv − xu ≤ w(u, v), so

δ(t) =
∑

(u,v)∈p

w(u, v) ≥
∑

(u,v)∈p

(xv − xu) = xt − xs .

But xs = 0, so xt ≤ δ(t).

Note: Maximizing xt subject to the above inequalities solves the single-pair
shortest-path problem when t is reachable from s and there are no negative-weight
cycles. But if there�s a negative-weight cycle, the inequalities have no feasible so-
lution (as demonstrated in the proof of Theorem 24.9); and if t is not reachable
from s, then xt is unbounded.

24-18 Solutions for Chapter 24: Single-Source Shortest Paths

Solution to Exercise 24.4-7

Observe that after the Þrst pass, all d values are at most 0, and that relaxing
edges (v0, vi) will never again change a d value. Therefore, we can eliminate v0 by
running the Bellman-Ford algorithm on the constraint graph without the v0 node
but initializing all shortest path estimates to 0 instead of ∞.

Solution to Exercise 24.4-10

To allow for single-variable constraints, we add the variable x0 and let it correspond
to the source vertex v0 of the constraint graph. The idea is that, if there are no
negative-weight cycles containing v0, we will Þnd that δ(v0, v0) = 0. In this case,
we set x0 = 0, and so we can treat any single-variable constraint using xi as if it
were a 2-variable constraint with x0 as the other variable.

SpeciÞcally, we treat the constraint xi ≤ bk as if it were xi − x0 ≤ bk , and we
add the edge (v0, vi) with weight bk to the constraint graph. We treat the constraint
−xi ≤ bk as if it were x0 − xi ≤ bk , and we add the edge (vi , v0) with weight bk to
the constraint graph.

Once we Þnd shortest-path weights from v0, we set xi = δ(v0, vi) for all i =
0, 1, . . . , n; that is, we do as before but also include x0 as one of the variables that
we set to a shortest-path weight. Since v0 is the source vertex, either x0 = 0 or
x0 < 0.

If δ(v0, v0) = 0, so that x0 = 0, then setting xi = δ(v0, vi) for all i = 0, 1, . . . , n
gives a feasible solution for the system. The only new constraints beyond those
in the text are those involving x0. For constraints xi ≤ bk , we use xi − x0 ≤ bk .
By the triangle inequality, δ(v0, vi) ≤ δ(v0, v0) + w(v0, vi) = bk , and so xi ≤ bk .
For constraints −xi ≤ bk , we use x0 − xi ≤ bk . By the triangle inequality, 0 =
δ(v0, v0) ≤ δ(v0, vi)+ w(vi , v0); thus, 0 ≤ xi + bk or, equivalently, −xi ≤ bk .

If δ(v0, v0) < 0, so that x0 < 0, then there is a negative-weight cycle containing v0.
The portion of the proof of Theorem 24.9 that deals with negative-weight cycles
carries through but with v0 on the negative-weight cycle, and we see that there is
no feasible solution.

Solution to Exercise 24.5-4

Whenever RELAX sets π for some vertex, it also reduces the vertex�s d value. Thus
if π [s] gets set to a non-NIL value, d[s] is reduced from its initial value of 0 to a
negative number. But d[s] is the weight of some path from s to s, which is a cycle
including s. Thus, there is a negative-weight cycle.

Solutions for Chapter 24: Single-Source Shortest Paths 24-19

Solution to Exercise 24.5-7

Suppose we have a shortest-paths tree Gπ . Relax edges in Gπ according to the
order in which a BFS would visit them. Then we are guaranteed that the edges
along each shortest path are relaxed in order. By the path-relaxation property, we
would then have d[v] = δ(s, v) for all v ∈ V . Since Gπ contains at most |V | − 1
edges, we need to relax only |V | − 1 edges to get d[v] = δ(s, v) for all v ∈ V .

Solution to Exercise 24.5-8

Suppose that there is a negative-weight cycle c = 〈v0, v1, . . . , vk〉, where
v0 = vk , that is reachable from the source vertex s; thus, w(c) < 0. With-
out loss of generality, c is simple. There must be an acyclic path from s to
some vertex of c that uses no other vertices in c. Without loss of generality let
this vertex of c be v0, and let this path from s to v0 be p = 〈u0, u1, . . . , ul〉,
where u0 = s and ul = v0 = vk . (It may be the case that ul = s, in
which case path p has no edges.) After the call to INITIALIZE-SINGLE-SOURCE

sets d[v] = ∞ for all v ∈ V − {s}, perform the following sequence of re-
laxations. First, relax every edge in path p, in order. Then relax every edge
in cycle c, in order, and repeatedly relax the cycle. That is, we relax the
edges (u0, u1), (u1, u2), . . . , (ul−1, v0), (v0, v1), (v1, v2), . . . , (vk−1, v0), (v0, v1),

(v1, v2), . . . , (vk−1, v0), (v0, v1), (v1, v2), . . . , (vk−1, v0),

We claim that every edge relaxation in this sequence reduces a shortest-path es-
timate. Clearly, the Þrst time we relax an edge (ui−1, ui) or (v j−1, v j), for
i = 1, 2, . . . , l and j = 1, 2, . . . , k − 1 (note that we have not yet relaxed the
last edge of cycle c), we reduce d[ui] or d[v j] from ∞ to a Þnite value. Now
consider the relaxation of any edge (vj−1, v j) after this opening sequence of re-
laxations. We use induction on the number of edge relaxations to show that this
relaxation reduces d[vj].

Basis: The next edge relaxed after the opening sequence is (vk−1, vk). Before re-
laxation, d[vk] = w(p), and after relaxation, d[vk] = w(p)+w(c) < w(p), since
w(c) < 0.

Inductive step: Consider the relaxation of edge (vj−1, v j). Since c is a sim-
ple cycle, the last time d[vj] was updated was by a relaxation of this same
edge. By the inductive hypothesis, d[vj−1] has just been reduced. Thus,
d[v j−1]+ w(v j−1, v j) < d[v j], and so the relaxation will reduce the value
of d[v j].

Solution to Problem 24-1

a. Assume for contradiction that G f is not acyclic; thus G f has a cycle. A cycle
must have at least one edge (u, v) in which u has higher index than v. This

24-20 Solutions for Chapter 24: Single-Source Shortest Paths

edge is not in E f (by the deÞnition of E f), in contradition to the assumption
that G f has a cycle. Thus G f is acyclic.

〈v1, v2, . . . , v|V |〉 is a topological sort for G f , because from the deÞnition of E f

we know that all edges are directed from smaller indices to larger indices.

The proof for Eb is similar.

b. For all vertices v ∈ V , we know that either δ(s, v) = ∞ or δ(s, v) is Þnite.
If δ(s, v) = ∞, then d[v] will be ∞. Thus, we need to consider only the
case where d[v] is Þnite. There must be some shortest path from s to v. Let
p = 〈v0, v1, . . . , vk−1, vk〉 be that path, where v0 = s and vk = v. Let us now
consider how many times there is a change in direction in p, that is, a situation
in which (vi−1, vi) ∈ E f and (vi , vi+1) ∈ Eb or vice versa. There can be at
most |V | − 1 edges in p, so there can be at most |V | − 2 changes in direction.
Any portion of the path where there is no change in direction is computed with
the correct d values in the Þrst or second half of a single pass once the node that
begins the no-change-in-direction sequence has the correct d value, because the
edges are relaxed in the order of the direction of the sequence. Each change in
direction requires a half pass in the new direction of the path. The following
table shows the maximum number of passes needed depending on the parity of
|V | − 1 and the direction of the Þrst edge:

|V | − 1 Þrst edge direction passes
even forward (|V | − 1)/2
even backward (|V | − 1)/2+ 1
odd forward |V | /2
odd backward |V | /2

In any case, the maximum number of passes that we will need is�|V | /2�.
c. This scheme does not affect the asymptotic running time of the algorithm be-

cause even though we perform only �|V | /2� passes instead of |V | − 1 passes,
it is still O(V) passes. Each pass still takes �(E) time, so the running time
remains O(V E).

Solution to Problem 24-2

a. Consider boxes with dimensions x = (x1, . . . , xd), y = (y1, . . . , yd), and
z = (z1, . . . , zd). Suppose there exists a permutation π such that xπ(i) < yi

for i = 1, . . . , d and there exists a permutation π′ such that yπ ′(i) < zi for
i = 1, . . . , d , so that x nests inside y and y nests inside z. Construct a
permutation π ′′, where π ′′(i) = π ′(π(i)). Then for i = 1, . . . , d , we have
xπ ′′(i) = xπ ′(π(i)) < yπ ′(i) < zi , and so x nests inside z.

b. Sort the dimensions of each box from longest to shortest. A box X with
sorted dimensions (x1, x2, . . . , xd) nests inside a box Y with sorted dimensions
(y1, y2, . . . , yd) if and only if xi < yi for i = 1, 2, . . . , d . The sorting can
be done in O(d lg d) time, and the test for nesting can be done in O(d) time,
and so the algorithm runs in O(d lg d) time. This algorithm works because a

Solutions for Chapter 24: Single-Source Shortest Paths 24-21

d-dimensional box can be oriented so that every permutation of its dimensions
is possible. (Experiment with a 3-dimensional box if you are unsure of this).

c. Construct a dag G = (V, E), where each vertex vi corresponds to box Bi , and
(vi , v j) ∈ E if and only if box Bi nests inside box Bj . Graph G is indeed a dag,
because nesting is transitive and antireßexive. The time to construct the dag is
O(dn2 + dn lg d), from comparing each of the

(n
2

)
pairs of boxes after sorting

the dimensions of each.

Add a supersource vertex s and a supersink vertex t to G, and add edges (s, vi)
for all vertices vi with in-degree 0 and (vj , t) for all vertices vj with out-
degree 0. Call the resulting dag G′. The time to do so is O(n).

Find a longest path from s to t in G′. (Section 24.2 discusses how to Þnd a
longest path in a dag.) This path corresponds to a longest sequence of nesting
boxes. The time to Þnd a longest path is O(n2), since G′ has n+ 2 vertices and
O(n2) edges.

Overall, this algorithm runs in O(dn2 + dn lg d) time.

Solution to Problem 24-3

a. We can use the Bellman-Ford algorithm on a suitable weighted, directed graph
G = (V, E), which we form as follows. There is one vertex in V for each
currency, and for each pair of currencies ci and cj , there are directed edges
(vi , v j) and (v j , vi). (Thus, |V | = n and |E | = (n2).)
To determine edge weights, we start by observing that

R[i1, i2] · R[i2, i3] · · · R[ik−1, ik] · R[ik, i1] > 1

if and only if

1

R[i1, i2]
· 1

R[i2, i3]
· · · 1

R[ik−1, ik]
· 1

R[ik, i1]
< 1 .

Taking logs of both sides of the inequality above, we express this condition as

lg
1

R[i1, i2]
+ lg

1

R[i2, i3]
+ lg

1

R[ik−1, ik]
+ · · · + lg

1

R[ik, i1]
< 0 .

Therefore, if we deÞne the weight of edge (vi , v j) as

w(vi , v j) = lg
1

R[i, j]
= − lg R[i, j] ,

then we want to Þnd whether there exists a negative-weight cycle in G with
these edge weights.

We can determine whether there exists a negative-weight cycle in G by adding
an extra vertex v0 with 0-weight edges (v0, vi) for all vi ∈ V , running
BELLMAN-FORD from v0, and using the boolean result of BELLMAN-FORD

(which is TRUE if there are no negative-weight cycles and FALSE if there is a

24-22 Solutions for Chapter 24: Single-Source Shortest Paths

negative-weight cycle) to guide our answer. That is, we invert the boolean result
of BELLMAN-FORD.

This method works because adding the new vertex v0 with 0-weight edges
from v0 to all other vertices cannot introduce any new cycles, yet it ensures
that all negative-weight cycles are reachable from v0.

It takes �(n2) time to create G, which has �(n2) edges. Then it takes O(n3)

time to run BELLMAN-FORD. Thus, the total time is O(n3).

Another way to determine whether a negative-weight cycle exists is to create G
and, without adding v0 and its incident edges, run either of the all-pairs shortest-
paths algorithms. If the resulting shortest-path distance matrix has any negative
values on the diagonal, then there is a negative-weight cycle.

b. Assuming that we ran BELLMAN-FORD to solve part (a), we only need to Þnd
the vertices of a negative-weight cycle. We can do so as follows. First, relax
all the edges once more. Since there is a negative-weight cycle, the d value of
some vertex u will change. We just need to repeatedly follow the π values until
we get back to u. In other words, we can use the recursive method given by the
PRINT-PATH procedure of Section 22.2, but stop it when it returns to vertex u.

The running time is O(n3) to run BELLMAN-FORD, plus O(n) to print the
vertices of the cycle, for a total of O(n3) time.

Solution to Problem 24-4

a. Since all weights are nonnegative, use Dijkstra�s algorithm. Implement the
priority queue as an array Q[0 . . |E | + 1], where Q[i] is a list of vertices v for
which d[v] = i . Initialize d[v] for v �= s to |E | + 1 instead of to ∞, so that all
vertices have a place in Q. (Any initial d[v] > δ(s, v) works in the algorithm,
since d[v] decreases until it reaches δ(s, v).)

The |V | EXTRACT-MINs can be done in O(E) total time, and decreasing a
d value during relaxation can be done in O(1) time, for a total running time
of O(E).

• When d[v] decreases, just add v to the front of the list in Q[d[v]].
• EXTRACT-MIN removes the head of the list in the Þrst nonempty slot of Q.

To do EXTRACT-MIN without scanning all of Q, keep track of the smallest i
for which Q[i] is not empty. The key point is that when d[v] decreases
due to relaxation of edge (u, v), d[v] remains ≥ d[u], so it never moves to
an earlier slot of Q than the one that had u, the previous minimum. Thus
EXTRACT-MIN can always scan upward in the array, taking a total of O(E)

time for all EXTRACT-MINs.

b. For all (u, v) ∈ E , we have w1(u, v) ∈ {0, 1}, so δ1(s, v) ≤ |V |−1 ≤ |E |. Use
part (a) to get the O(E) time bound.

c. To show that wi(u, v) = 2wi−1(u, v) or wi(u, v) = 2wi−1(u, v) + 1, observe
that the i bits of wi (u, v) consist of the i − 1 bits of wi−1(u, v) followed by one

Solutions for Chapter 24: Single-Source Shortest Paths 24-23

more bit. If that low-order bit is 0, then wi(u, v) = 2wi−1(u, v); if it is 1, then
wi(u, v) = 2wi−1(u, v)+ 1.

Notice the following two properties of shortest paths:

1. If all edge weights are multiplied by a factor of c, then all shortest-path
weights are multiplied by c.

2. If all edge weights are increased by at most c, then all shortest-path weights
are increased by at most c(|V | − 1), since all shortest paths have at most
|V | − 1 edges.

The lowest possible value for wi(u, v) is 2wi−1(u, v), so by the Þrst observa-
tion, the lowest possible value for δi(s, v) is 2δi−1(s, v).

The highest possible value for wi(u, v) is 2wi−1(u, v) + 1. Therefore, us-
ing the two observations together, the highest possible value for δi(s, v) is
2δi−1(s, v)+ |V | − 1.

d. We have

ŵi(u, v) = wi(u, v)+ 2δi−1(s, u)− 2δi−1(s, v)

≥ 2wi−1(u, v)+ 2δi−1(s, u)− 2δi−1(s, v)

≥ 0 .

The second line follows from part (c). The third line follows from
Lemma 24.10: δi−1(s, v) ≤ δi−1(s, u)+ wi−1(u, v).

e. Observe that if we compute ŵi(p) for any path p : u � v, the terms δi−1(s, t)
cancel for every intermediate vertex t on the path. Thus,

ŵi(p) = wi (p)+ 2δi−1(s, u)− 2δi−1(s, v) .

(This will be shown in detail in equation (25.10) within the proof of
Lemma 25.1.) The δi−1 terms depend only on u, v, and s, but not on the path p;
therefore the same paths will be of minimum wi weight and of minimum ŵi

weight between u and v. Letting u = s, we get

δ̂i (s, v) = δi (s, v)+ 2δi−1(s, s)− 2δi−1(s, v) = δi(s, v)− 2δi−1(s, v) .

Rewriting this result as δi (s, v) = δ̂i(s, v) + 2δi−1(s, v) and combining it with
δi (s, v) ≤ 2δi−1(s, v)+|V |−1 (from part (c)) gives us δ̂i (s, v) ≤ |V |−1 ≤ |E |.

f. To compute δi(s, v) from δi−1(s, v) for all v ∈ V in O(E) time:

1. Compute the weights ŵi (u, v) in O(E) time, as shown in part (d).
2. By part (e), δ̂i (s, v) ≤ |E |, so use part (a) to compute all δ̂i(s, v) in O(E)

time.
3. Compute all δi (s, v) from δ̂i (s, v) and δi−1(s, v) as shown in part (e), in

O(V) time.

To compute all δ(s, v) in O(E lg W) time:

1. Compute δ1(s, v) for all v ∈ V . As shown in part (b), this takes O(E) time.
2. For each i = 2, 3, . . . , k, compute all δi (s, v) from δi−1(s, v) in O(E)

time as shown above. This procedure computes δ(s, v) = δk(u, v) in time
O(Ek) = O(E lg W).

24-24 Solutions for Chapter 24: Single-Source Shortest Paths

Solution to Problem 24-6

Observe that a bitonic sequence can increase, then decrease, then increase, or it can
decrease, then increase, then decrease. That is, there can be at most two changes of
direction in a bitonic sequence. Any sequence that increases, then decreases, then
increases, then decreases has a bitonic sequence as a subsequence.

Now, let us suppose that we had an even stronger condition than the bitonic prop-
erty given in the problem: for each vertex v ∈ V , the weights of the edges along
any shortest path from s to v are increasing. Then we could call INITIALIZE-
SINGLE-SOURCE and then just relax all edges one time, going in increasing order
of weight. Then the edges along every shortest path would be relaxed in order of
their appearance on the path. (We rely on the uniqueness of edge weights to en-
sure that the ordering is correct. [Note that the uniqueness assumption was added
in the Þfth printing of the text.]) The path-relaxation property (Lemma 24.15)
would guarantee that we would have computed correct shortest paths from s to
each vertex.

If we weaken the condition so that the weights of the edges along any shortest path
increase and then decrease, we could relax all edges one time, in increasing order
of weight, and then one more time, in decreasing order of weight. That order, along
with uniqueness of edge weights, would ensure that we had relaxed the edges of
every shortest path in order, and again the path-relaxation property would guarantee
that we would have computed correct shortest paths.

To make sure that we handle all bitonic sequences, we do as suggested above. That
is, we perform four passes, relaxing each edge once in each pass. The Þrst and third
passes relax edges in increasing order of weight, and the second and fourth passes
in decreasing order. Again, by the path-relaxation property and the uniqueness of
edge weights, we have computed correct shortest paths.

The total time is O(V + E lg V), as follows. The time to sort |E | edges by weight
is O(E lg E) = O(E lg V) (since |E | = O(V 2)). INITIALIZE-SINGLE-SOURCE

takes O(V) time. Each of the four passes takes O(E) time. Thus, the total time is
O(E lg V + V + E) = O(V + E lg V).

Lecture Notes for Chapter 25:
All-Pairs Shortest Paths

Chapter 25 overview

Given a directed graph G = (V, E), weight function w : E → R, |V | = n.

Goal: create an n × n matrix of shortest-path distances δ(u, v).

Could run BELLMAN-FORD once from each vertex:

• O(V 2 E)�which is O(V 4) if the graph is dense (E = �(V2)).

If no negative-weight edges, could run Dijkstra�s algorithm once from each vertex:

• O(V E lg V) with binary heap�O(V 3 lg V) if dense,
• O(V 2 lg V + V E) with Fibonacci heap�O(V 3) if dense.

We�ll see how to do in O(V3) in all cases, with no fancy data structure.

Shortest paths and matrix multiplication

Assume that G is given as adjacency matrix of weights: W = (wi j), with vertices
numbered 1 to n.

wi j =
⎧⎨⎩0 if i = j ,

weight of (i, j) if i �= j , (i, j) ∈ E ,

∞ if i �= j , (i, j) /∈ E .

Output is matrix D = (dij), where dij = δ(i, j). Won�t worry about predeces-
sors�see book.

Will use dynamic programming at Þrst.

Optimal substructure: Recall: subpaths of shortest paths are shortest paths.

Recursive solution: Let l(m)
i j = weight of shortest path i � j that contains ≤ m

edges.

• m = 0
⇒ there is a shortest path i � j with ≤ m edges if and only if i = j

⇒ l(0)
i j =

{
0 if i = j ,

∞ if i �= j .

25-2 Lecture Notes for Chapter 25: All-Pairs Shortest Paths

• m ≥ 1

⇒ l(m)
i j = min

(
l(m−1)
i j , min

1≤k≤n

{
l(m−1)
ik + wkj

})
(k is all possible predecessors of j)

= min
1≤k≤n

{
l(m−1)
ik + wkj

}
since w j j = 0 for all j .

• Observe that when m = 1, must have l(1)
i j = wi j .

Conceptually, when the path is restricted to at most 1 edge, the weight of the
shortest path i � j must be wi j .

And the math works out, too:

l(1)
i j = min

1≤k≤n

{
l(0)
ik + wkj

}
= l(0)

ii + wi j (l(0)
ii is the only non-∞ among l(0)

ik)

= wi j .

All simple shortest paths contain ≤ n − 1 edges
⇒ δ(i, j) = l(n−1)

i j = l(n)
i j = l(n+1)

i j = . . .

Compute a solution bottom-up: Compute L(1), L (2), . . . , L (n−1).

Start with L(1) = W , since l(1)
i j = wi j .

Go from L(m−1) to L(m):

EXTEND(L , W, n)

create L ′, an n × n matrix
for i ← 1 to n

do for j ← 1 to n
do l ′i j ←∞
for k ← 1 to n

do l ′i j ← min(l ′i j , lik + wkj)

return L ′

Compute each L(m):

SLOW-APSP(W, n)

L (1) ← W
for m ← 2 to n − 1

do L (m) ← EXTEND(L (m−1), W, n)

return L(n−1)

Time:

• EXTEND: �(n3).
• SLOW-APSP: �(n4).

Lecture Notes for Chapter 25: All-Pairs Shortest Paths 25-3

Observation: EXTEND is like matrix multiplication:
L → A

W → B

L ′ → C

min → +
+ → ·
∞ → 0

create C , an n × n matrix
for i ← 1 to n

do for j ← 1 to n
do ci j ← 0
for k ← 1 to n

do ci j ← ci j + aik · bkj

So, we can view EXTEND as just like matrix multiplication!

Why do we care?

Because our goal is to compute L(n−1) as fast as we can. Don�t need to compute
all the intermediate L(1), L (2), L (3), . . . , L (n−2).

Suppose we had a matrix A and we wanted to compute An−1 (like calling EXTEND

n − 1 times).

Could compute A, A2, A4, A8, . . .

If we knew Am = An−1 for all m ≥ n − 1, could just Þnish with Ar , where r is the
smallest power of 2 that�s ≥ n − 1. (r = 2�lg(n−1)�)

FASTER-APSP(W, n)

L (1) ← W
m ← 1
while m < n − 1

do L (2m) ← EXTEND(L (m), L (m), n)

m ← 2m
return L(m)

OK to overshoot, since products don�t change after L(n−1).

Time: �(n3 lg n).

Floyd-Warshall algorithm

A different dynamic-programming approach.

For path p = 〈v1, v2, . . . , vl〉, an intermediate vertex is any vertex of p other than
v1 or vl .

Let d(k)
i j = shortest-path weight of any path i � j with all intermediate vertices in

{1, 2, . . . , k}.
Consider a shortest path i

p
� j with all intermediate vertices in {1, 2, . . . , k}:

25-4 Lecture Notes for Chapter 25: All-Pairs Shortest Paths

• If k is not an intermediate vertex, then all intermediate vertices of p are in
{1, 2, . . . , k − 1}.

• If k is an intermediate vertex:

i k j
p1 p2

all intermediate vertices in {1, 2, ..., k�1}

Recursive formulation

d(k)
i j =

{
wi j if k = 0 ,

min
(
d(k−1)

i j , d(k−1)
ik + d(k−1)

kj

)
if k ≥ 1 .

(Have d(0)
i j = wi j because can�t have intermediate vertices ⇒≤ 1 edge.)

Want D(n) = (d(n)
i j

)
, since all vertices numbered ≤ n.

Compute bottom-up

Compute in increasing order of k:

FLOYD-WARSHALL(W, n)

D(0) ← W
for k ← 1 to n

do for i ← 1 to n
do for j ← 1 to n

do d(k)
i j ← min

(
d(k−1)

i j , d(k−1)
ik + d(k−1)

kj

)
return D(n)

Can drop superscripts. (See Exercise 25.2-4 in text.)

Time: �(n3).

Transitive closure

Given G = (V, E), directed.

Compute G∗ = (V, E∗).
• E∗ = {(i, j) : there is a path i � j in G}.
Could assign weight of 1 to each edge, then run FLOYD-WARSHALL.

• If dij < n, then there is a path i � j .
• Otherwise, dij = ∞ and there is no path.

Lecture Notes for Chapter 25: All-Pairs Shortest Paths 25-5

Simpler way: Substitute other values and operators in FLOYD-WARSHALL.

• Use unweighted adjacency matrix
• min → ∨ (OR)
• + → ∧ (AND)

• t (k)
i j =

{
1 if there is path i � j with all intermediate vertices in {1, 2, . . . , k} ,

0 otherwise .

• t (0)
i j =

{
0 if i �= j and (i, j) /∈ E ,

1 if i = j or (i, j) ∈ E .

• t (k)
i j = t (k−1)

i j ∨ (t (k−1)
ik ∧ t (k−1)

kj

)
.

TRANSITIVE-CLOSURE(E, n)

for i ← 1 to n
do for j ← 1 to n

do if i = j or (i, j) ∈ E[G]
then t (0)

i j ← 1
else t(0)

i j ← 0
for k ← 1 to n

do for i ← 1 to n
do for j ← 1 to n

do t (k)
i j ← t (k−1)

i j ∨ (t (k−1)
ik ∧ t (k−1)

kj

)
return T (n)

Time: �(n3), but simpler operations than FLOYD-WARSHALL.

Johnson�s algorithm

Idea: If the graph is sparse, it pays to run Dijkstra�s algorithm once from each
vertex.

If we use a Fibonacci heap for the priority queue, the running time is down
to O(V 2 lg V + V E), which is better than FLOYD-WARSHALL�s �(V 3) time if
E = o(V 2).

But Dijkstra�s algorithm requires that all edge weights be nonnegative.

Donald Johnson Þgured out how to make an equivalent graph that does have all
edge weights ≥ 0.

Reweighting

Compute a new weight function ŵ such that

1. For all u, v ∈ V , p is a shortest path u � v using w if and only if p is a shortest
path u � v using ŵ.

2. For all (u, v) ∈ E, ŵ(u, v) ≥ 0.

25-6 Lecture Notes for Chapter 25: All-Pairs Shortest Paths

Property (1) says that it sufÞces to Þnd shortest paths with ŵ. Property (2) says we
can do so by running Dijkstra�s algorithm from each vertex.

How to come up with ŵ?

Lemma shows it�s easy to get property (1):

Lemma (Reweighting doesn�t change shortest paths)
Given a directed, weighted graph G = (V, E), w : E → R. Let h be any function
such that h : V → R. For all (u, v) ∈ E , deÞne

ŵ(u, v) = w(u, v)+ h(u)− h(v) .

Let p = 〈v0, v1, . . . , vk〉 be any path v0 � vk .

Then, p is a shortest path v0 � vk with w if and only if p is a shortest path v0 � vk

with ŵ. (Formally, w(p) = δ(v0, vk) if and only if ŵ = δ̂(v0, vk), where δ̂ is the
shortest-path weight with ŵ.)

Also, G has a negative-weight cycle with w if and only if G has a negative-weight
cycle with ŵ.

Proof First, we�ll show that ŵ(p) = w(p)+ h(v0)− h(vk):

ŵ(p) =
k∑

i=1

ŵ(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi)+ h(vi−1)− h(vi))

=
k∑

i=1

w(vi−1, vi)+ h(v0)− h(vk) (sum telescopes)

= w(p)+ h(v0)− h(vk) .

Therefore, any path v0
p

� vk has ŵ(p) = w(p) + h(v0) − h(vk). Since h(v0)

and h(vk) don�t depend on the path from v0 to vk , if one path v0 � vk is shorter
than another with w, it�s also shorter with ŵ.

Now show there exists a negative-weight cycle with w if and only if there exists a
negative-weight cycle with ŵ:

• Let cycle c = 〈v0, v1, . . . , vk〉, where v0 = vk .
• Then

ŵ(c) = w(c)+ h(v0)− h(vk)

= w(c) (since v0 = vk) .

Therefore, c has a negative-weight cycle with w if and only if it has a negative-
weight cycle with ŵ. (lemma)

So, now to get property (2), we just need to come up with a function h : V → R
such that when we compute ŵ(u, v) = w(u, v)+ h(u)− h(v), it�s ≥ 0.

Do what we did for difference constraints:

• G ′ = (V ′, E ′)

Lecture Notes for Chapter 25: All-Pairs Shortest Paths 25-7

• V ′ = V ∪ {s}, where s is a new vertex.
• E ′ = E ∪ {(s, v) : v ∈ V }.
• w(s, v) = 0 for all v ∈ V .

• Since no edges enter s, G′ has the same set of cycles as G. In particular, G′ has
a negative-weight cycle if and only if G does.

DeÞne h(v) = δ(s, v) for all v ∈ V .

Claim
ŵ(u, v) = w(u, v)+ h(u)− h(v) ≥ 0.

Proof By the triangle inequality,

δ(s, v) ≤ δ(s, u)+ w(u, v)

h(v) ≤ h(u)+ w(u, v) .

Therefore, w(u, v)+ h(u)− h(v) ≥ 0. (claim)

Johnson�s algorithm

form G′
run BELLMAN-FORD on G ′ to compute δ(s, v) for all v ∈ V
if BELLMAN-FORD returns FALSE

then G has a negative-weight cycle
else

compute ŵ(u, v) = w(u, v)+ δ(s, u)− δ(s, v) for all (u, v) ∈ E
for each vertex u ∈ V

do run Dijkstra�s algorithm from u using weight function ŵ

to compute δ̂(u, v) for all v ∈ V
for each vertex v ∈ V

do� Compute entry duv in matrix D
duv = δ̂(u, v)+ δ(s, v)− δ(s, u)︸ ︷︷ ︸

because if p is a path u � v,
then ŵ(p) = w(p)+ h(u)− h(v)

Time:

• �(V + E) to compute G′.
• O(V E) to run BELLMAN-FORD.
• �(E) to compute ŵ.
• O(V 2 lg V +V E) to run Dijkstra�s algorithm |V | times (using Fibonacci heap).
• �(V 2) to compute D matrix.

Total: O(V 2 lg V + V E).

Solutions for Chapter 25:
All-Pairs Shortest Paths

Solution to Exercise 25.1-3

The matrix L(0) corresponds to the identity matrix

I =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠
of regular matrix multiplication. Substitute 0 (the identity for +) for ∞ (the iden-
tity for min), and 1 (the identity for ·) for 0 (the identity for +).

Solution to Exercise 25.1-5

The all-pairs shortest-paths algorithm in Section 25.1 computes

L (n−1) = W n−1 = L (0) · W n−1

where l(n−1)
i j = δ(i, j) and L(0) is the identity matrix. That is, the entry in the

i th row and j th column of the matrix �product� is the shortest-path distance from
vertex i to vertex j , and row i of the product is the solution to the single-source
shortest-paths problem for vertex i .

Notice that in a matrix �product� C = A · B, the i th row of C is the i th row of A
�multiplied� by B. Since all we want is the i th row of C , we never need more than
the i th row of A.

Thus the solution to the single-source shortest-paths from vertex i is L(0)
i · W n−1,

where L(0)
i is the i th row of L(0)�a vector whose i th entry is 0 and whose other

entries are ∞.

Doing the above �multiplications� starting from the left is essentially the same
as the BELLMAN-FORD algorithm. The vector corresponds to the d values in
BELLMAN-FORD�the shortest-path estimates from the source to each vertex.

• The vector is initially 0 for the source and ∞ for all other vertices, the same as
the values set up for d by INITIALIZE-SINGLE-SOURCE.

Solutions for Chapter 25: All-Pairs Shortest Paths 25-9

• Each �multiplication� of the current vector by W relaxes all edges just as
BELLMAN-FORD does. That is, a distance estimate in the row, say the distance
to v, is updated to a smaller estimate, if any, formed by adding some w(u, v) to
the current estimate of the distance to u.

• The relaxation/multiplication is done n − 1 times.

Solution to Exercise 25.1-10

Run SLOW-ALL-PAIRS-SHORTEST-PATHS on the graph. Look at the diagonal el-
ements of L(m). Return the Þrst value of m for which one (or more) of the diagonal
elements (l(m)

ii) is negative. If m reaches n + 1, then stop and declare that there are
no negative-weight cycles.

Let the number of edges in a minimum-length negative-weight cycle be m∗, where
m∗ = ∞ if the graph has no negative-weight cycles.

Correctness: Let�s assume that for some value m∗ ≤ n and some value of i , we
Þnd that l(m

∗)
ii < 0. Then the graph has a cycle with m∗ edges that goes from vertex i

to itself, and this cycle has negative weight (stored in l(m
∗)

ii). This is the minimum-
length negative-weight cycle because SLOW-ALL-PAIRS-SHORTEST-PATHS com-
putes all paths of 1 edge, then all paths of 2 edges, and so on, and all cycles shorter
than m∗ edges were checked before and did not have negative weight. Now as-
sume that for all m ≤ n, there is no negative l(m)

ii element. This means there is no
negative-weight cycle in the graph, because all cycles have length at most n.

Time: O(n4). More precisely, �(n3 ·min(n, m∗)).

Faster solution

Run FASTER-ALL-PAIRS-SHORTEST-PATHS on the graph until the Þrst time that
the matrix L(m) has one or more negative values on the diagonal, or until we have
computed L(m) for some m > n. If we Þnd any negative entries on the diagonal,
we know that the minimum-length negative-weight cycle has more than m/2 edges
and at most m edges. We just need to binary search for the value of m∗ in the range
m/2 < m∗ ≤ m. The key observation is that on our way to computing L(m), we
computed L(1), L (2), L (4), L (8), . . . , L (m/2), and these matrices sufÞce to compute
every matrix we�ll need. Here�s pseudocode:

25-10 Solutions for Chapter 25: All-Pairs Shortest Paths

FIND-MIN-LENGTH-NEG-WEIGHT-CYCLE(W)

n ← rows[W]
L (1) ← W
m ← 1
while m ≤ n and no diagonal entries of L(m) are negative

do L (2m) ← EXTEND-SHORTEST-PATHS(L (m), L (m))

m ← 2m
if m > n and no diagonal entries of L(m) are negative
then return �no negative-weight cycles�

elseif m ≤ 2
then return m

else
low ← m/2
high ← m
d ← m/4
while d ≥ 1

do s ← low+d
L (s) ← EXTEND-SHORTEST-PATHS(L (low), L (d))

if L(s) has any negative entries on the diagonal
then high ← s
else low ← s

d ← d/2
return high

Correctness: If, after the Þrst while loop, m > n and no diagonal entries of L(m)

are negative, then there is no negative-weight cycle. Otherwise, if m ≤ 2, then
either m = 1 or m = 2, and L(m) is the Þrst matrix with a negative entry on the
diagonal. Thus, the correct value to return is m.

If m > 2, then we maintain an interval bracketed by the values low and high, such
that the correct value m∗ is in the range low < m∗ ≤ high. We use the following
loop invariant:

Loop invariant: At the start of each iteration of the �while d ≥ 1� loop,

1. d = 2p for some integer p ≥ −1,
2. d = (high− low)/2,
3. low < m∗ ≤ high.

Initialization: Initially, m is an integer power of 2 and m > 2. Since d = m/4,
we have that d is an integer power of 2 and d > 1/2, so that d = 2p for some
integer p ≥ 0. We also have (high− low)/2 = (m − (m/2))/2 = m/4 = d .
Finally, L(m) has a negative entry on the diagonal and L(m/2) does not. Since
low = m/2 and high = m, we have that low < m∗ ≤ high.

Maintenance: We use high, low, and d to denote variable values in a given it-
eration, and high′, low′, and d ′ to denote the same variable values in the next
iteration. Thus, we wish to show that d = 2p for some integer p ≥ −1 im-
plies d′ = 2p′ for some integer p′ ≥ −1, that d = (high− low)/2 implies
d ′ = (high′ − low′)/2, and that low < m∗ ≤ high implies low′ < m∗ ≤ high′.

Solutions for Chapter 25: All-Pairs Shortest Paths 25-11

To see that d′ = 2p′ , note that d′ = d/2, and so d = 2p−1. The condition that
d ≥ 1 implies that p ≥ 0, and so p′ ≥ −1.

Within each iteration, s is set to low+d , and one of the following actions oc-
curs:

• If L(s) has any negative entries on the diagonal, then high′ is set to s and
d ′ is set to d/2. Upon entering the next iteration, (high′ − low′)/2 =
(s − low′)/2 = ((low+d) − low)/2 = d/2 = d′. Since L(s) has a negative
diagonal entry, we know that m∗ ≤ s. Because high′ = s and low′ = low,
we have that low′ < m∗ ≤ high′.

• If L(s) has no negative entries on the diagonal, then low′ is set to s, and
d ′ is set to d/2. Upon entering the next iteration, (high′ − low′)/2 =
(high′ −s)/2 = (high−(low+d))/2 = (high− low)/2− d/2 = d − d/2 =
d/2 = d ′. Since L(s) has no negative diagonal entries, we know that m∗ > s.
Because low′ = s and high′ = high, we have that low′ < m∗ ≤ high′.

Termination: At termination, d < 1. Since d = 2p for some integer p ≥ −1,
we must have p = −1, so that d = 1/2. By the second part of the loop
invariant, if we multiply both sides by 2, we get that high− low = 2d = 1.
By the third part of the loop invariant, we know that low < m∗ ≤ high. Since
high− low = 2d = 1 and m∗ > low, the only possible value for m∗ is high,
which the procedure returns.

Time: If there is no negative-weight cycle, the Þrst while loop iterates �(lg n)

times, and the total time is �(n3 lg n).

Now suppose that there is a negative-weight cycle. We claim that each time we
call EXTEND-SHORTEST-PATHS(L (low), L (d)), we have already computed L(low)

and L(d). Initially, since low = m/2, we had already computed L(low) in the Þrst
while loop. In succeeding iterations of the second while loop, the only way that low
changes is when it gets the value of s, and we have just computed L(s). As for L(d),
observe that d takes on the values m/4, m/8, m/16, . . . , 1, and again, we computed
all of these L matrices in the Þrst while loop. Thus, the claim is proven. Each of
the two while loops iterates �(lg m∗) times. Since we have already computed the
parameters to each call of EXTEND-SHORTEST-PATHS, each iteration is dominated
by the �(n3)-time call to EXTEND-SHORTEST-PATHS. Thus, the total time is
�(n3 lg m∗).
In general, therefore, the running time is �(n3 lg min(n, m∗)).

Space: The slower algorithm needs to keep only three matrices at any time,
and so its space requirement is �(n3). This faster algorithm needs to main-
tain �(lg min(n, m∗)) matrices, and so the space requirement increases to
�(n3 lg min(n, m∗)).

Solution to Exercise 25.2-4

With the superscripts, the computation is d(k)
i j ← min

(
d(k−1)

i j , d(k−1)
ik + d(k−1)

kj

)
. If,

having dropped the superscripts, we were to compute and store dik or dkj before

25-12 Solutions for Chapter 25: All-Pairs Shortest Paths

using these values to compute dij , we might be computing one of the following:

d(k)
i j ← min

(
d(k−1)

i j , d(k)
ik + d(k−1)

kj

)
d(k)

i j ← min
(
d(k−1)

i j , d(k−1)
ik + d(k)

kj

)
d(k)

i j ← min
(
d(k−1)

i j , d(k)
ik + d(k)

kj

)
In any of these scenarios, we�re computing the weight of a shortest path from i to j
with all intermediate vertices in {1, 2, . . . , k}. If we use d(k)

ik , rather than d(k−1)
ik ,

in the computation, then we�re using a subpath from i to k with all intermediate
vertices in {1, 2, . . . , k}. But k cannot be an intermediate vertex on a shortest path
from i to k, since otherwise there would be a cycle on this shortest path. Thus,
d(k)

ik = d(k−1)
ik . A similar argument applies to show that d(k)

kj = d(k−1)
kj . Hence, we

can drop the superscripts in the computation.

Solution to Exercise 25.2-6

Here are two ways to detect negative-weight cycles:

1. Check the main-diagonal entries of the result matrix for a negative value. There
is a negative weight cycle if and only if d(n)

ii < 0 for some vertex i :

• d(n)
ii is a path weight from i to itself; so if it is negative, there is a path from i

to itself (i.e., a cycle), with negative weight.
• If there is a negative-weight cycle, consider the one with the fewest vertices.

• If it has just one vertex, then some wii < 0, so dii starts out negative, and
since d values are never increased, it is also negative when the algorithm
terminates.

• If it has at least two vertices, let k be the highest-numbered vertex in the
cycle, and let i be some other vertex in the cycle. d(k−1)

ik and d(k−1)
ki have

correct shortest-path weights, because they are not based on negative-
weight cycles. (Neither d(k−1)

ik nor d(k−1)
ki can include k as an intermediate

vertex, and i and k are on the negative-weight cycle with the fewest
vertices.) Since i � k � i is a negative-weight cycle, the sum of
those two weights is negative, so d(k)

ii will be set to a negative value.
Since d values are never increased, it is also negative when the algorithm
terminates.

In fact, it sufÞces to check whether d(n−1)
ii < 0 for some vertex i . Here�s why.

A negative-weight cycle containing vertex i either contains vertex n or it does
not. If it does not, then clearly d(n−1)

ii < 0. If the negative-weight cycle contains
vertex n, then consider d(n−1)

nn . This value must be negative, since the cycle,
starting and ending at vertex n, does not include vertex n as an intermediate
vertex.

2. Alternatively, one could just run the normal FLOYD-WARSHALL algorithm one
extra iteration to see if any of the d values change. If there are negative cycles,
then some shortest-path cost will be cheaper. If there are no such cycles, then
no d values will change because the algorithm gives the correct shortest paths.

Solutions for Chapter 25: All-Pairs Shortest Paths 25-13

Solution to Exercise 25.3-4

It changes shortest paths. Consider the following graph. V = {s, x, y, z}, and
there are 4 edges: w(s, x) = 2, w(x, y) = 2, w(s, y) = 5, and w(s, z) = −10.
So we�d add 10 to every weight to make ŵ. With w, the shortest path from s to y
is s → x → y, with weight 4. With ŵ, the shortest path from s to y is s → y,
with weight 15. (The path s → x → y has weight 24.) The problem is that by just
adding the same amount to every edge, you penalize paths with more edges, even
if their weights are low.

Solution to Exercise 25.3-6

In this solution, we assume that ∞−∞ is undeÞned; in particular, it�s not 0.

Let G = (V, E), where V = {s, u}, E = {(u, s)}, and w(u, s) = 0. There
is only one edge, and it enters s. When we run Bellman-Ford from s, we get
h(s) = δ(s, s) = 0 and h(u) = δ(s, u) = ∞. When we reweight, we get
ŵ(u, s) = 0 + ∞ − 0 = ∞. We compute δ̂(u, s) = ∞, and so we compute
dus = ∞+ 0−∞ �= 0. Since δ(u, s) = 0, we get an incorrect answer.

If the graph G is strongly connected, then we get h(v) = δ(s, v) < ∞ for all
vertices v ∈ V . Thus, the triangle inequality says that h(v) ≤ h(u)+w(u, v) for all
edges (u, v) ∈ E , and so ŵ(u, v) = w(u, v)+h(u)−h(v) ≥ 0. Moreover, all edge
weights ŵ(u, v) used in Lemma 25.1 are Þnite, and so the lemma holds. Therefore,
the conditions we need in order to use Johnson�s algorithm hold: that reweighting
does not change shortest paths, and that all edge weights ŵ(u, v) are nonnegative.
Again relying on G being strongly connected, we get that δ̂(u, v) < ∞ for all
edges (u, v) ∈ E , which means that duv = δ̂(u, v) + h(v) − h(u) is Þnite and
correct.

Solution to Problem 25-1

a. Let T be the |V | × |V | matrix representing the transitive closure, such that
T [i, j] is 1 if there is a path from i to j , and 0 if not.

Initialize T (when there are no edges in G) as follows:

T [i, j] =
{

1 if i = j ,

0 otherwise .

T can be updated as follows when an edge (u, v) is added to G:

TRANSITIVE-CLOSURE-UPDATE(u, v)

for i ← 1 to |V |
do for j ← 1 to |V |

do if T [i, u] = 1 and T [v, j] = 1
then T [i, j] ← 1

25-14 Solutions for Chapter 25: All-Pairs Shortest Paths

• This says that the effect of adding edge (u, v) is to create a path (via the new
edge) from every vertex that could already reach u to every vertex that could
already be reached from v.

• Note that the procedure sets T [u, v] ← 1, because of the initial values
T [u, u] = T [v, v] = 1.

• This takes �(V 2) time because of the two nested loops.

b. Consider inserting the edge (vn, v1) into the straight-line graph v1 → v2 →
· · · → vn , where n = |V |.
Before this edge is inserted, only n(n + 1)/2 entries in T are 1 (the entries on
and above the main diagonal). After the edge is inserted, the graph is a cycle
in which every vertex can reach every other vertex, so all n2 entries in T are 1.
Hence n2 − (n(n + 1)/2) = �(n2) = �(V 2) entries must be changed in T ,
so any algorithm to update the transitive closure must take �(V2) time on this
graph.

c. The algorithm in part (a) would take �(V4) time to insert all possible �(V2)

edges, so we need a more efÞcient algorithm in order for any sequence of in-
sertions to take only O(V3) total time.

To improve the algorithm, notice that the loop over j is pointless when
T [i, v] = 1. That is, if there is already a path i � v, then adding the edge (u, v)

can�t make any new vertices reachable from i . The loop to set T [i, j] to 1 for j
such that there�s a path v � j is just setting entries that are already 1. Eliminate
this redundant processing as follows:

TRANSITIVE-CLOSURE-UPDATE(u, v)

for i ← 1 to |V |
do if T [i, u] = 1 and T [i, v] = 0

then for j ← 1 to |V |
do if T [v, j] = 1

then T [i, j] ← 1

We show that this procedure takes O(V3) time to update the transitive closure
for any sequence of n insertions:

• There can�t be more than |V |2 edges in G, so n ≤ |V |2.
• Summed over n insertions, time for the Þrst two lines is O(nV) = O(V3).
• The last three lines, which take �(V) time, are executed only O(V2) times

for n insertions. To see this, notice that the last three lines are executed only
when T [i, v] = 0, and in that case, the last line sets T [i, v] ← 1. Thus, the
number of 0 entries in T is reduced by at least 1 each time the last three lines
run. Since there are only |V |2 entries in T , these lines can run at most |V |2
times.

• Hence the total running time over n insertions is O(V3).

Lecture Notes for Chapter 26:
Maximum Flow

Chapter 26 overview

Network ßow

Use a graph to model material that ßows through conduits.

Each edge represents one conduit, and has a capacity, which is an upper bound on
the ßow rate = units/time.

Can think of edges as pipes of different sizes. But ßows don�t have to be of liquids.
Book has an example where a ßow is how many trucks per day can ship hockey
pucks between cities.

Want to compute max rate that we can ship material from a designated source to a
designated sink.

Flow networks

G = (V, E) directed.

Each edge (u, v) has a capacity c(u, v) ≥ 0.

If (u, v) �∈ E , then c(u, v) = 0.

Source vertex s, sink vertex t , assume s � v � t for all v ∈ V .

Example: [Edges are labeled with capacities.]

3

2

3

2

1

3

1s t

2

w

y

x

z

3 3 2

[In these notes, we deÞne positive ßow Þrst because it�s more intuitive to students
than the ßow formulation in the book. We�ll migrate towards ßow in the book
soon. We�ll call it �net ßow� at Þrst in the lecture notes. Net ßow tends to be
mathematically neater to work with than positive ßow.]

26-2 Lecture Notes for Chapter 26: Maximum Flow

Positive ßow: A function p : V × V → R satisfying

• Capacity constraint: For all u, v ∈ V, 0 ≤ p(u, v) ≤ c(u, v),
• Flow conservation: For all u ∈ V − {s, t},

∑
v∈V

p(v, u)︸ ︷︷ ︸
ßow into u

=
∑
v∈V

p(u, v)︸ ︷︷ ︸
ßow out of u

.

Equivalently,
∑
v∈V

p(u, v)−
∑
v∈V

p(v, u) = 0.

[Add ßows to previous example. Edges here are labeled as ßow/capacity.]

2/3

1/2

2/3

2/2

0/1

1/3
1/1

s t

2/2

w

y

x

z

1/3
2/3

1/2

• Note that all positive ßows are ≤ capacities.
• Verify ßow conservation by adding up ßows at a couple of vertices.
• Note that all positive ßows = 0 is legitimate.

Cancellation with positive ßows

• Without loss of generality, can say positive ßow goes either from u to v or from
v to u, but not both. (Because if not true, can transform by cancellation to be
true.)

• In the above example, we can �cancel� 1 unit of ßow in each direction between
x and z.

1 unit x → z
2 units z → x

⇒ 0 units x → z
1 unit z → x

• In both cases, �net ßow� is 1 unit z → x .
• Capacity constraint is still satisÞed (because ßows only decrease).
• Flow conservation is still satisÞed (ßow in and ßow out are both reduced by the

same amount).

Here�s a concept similar to positive ßow:

Net ßow: A function f : V × V → R satisfying

• Capacity constraint: For all u, v ∈ V, f (u, v) ≤ c(u, v),
• Skew symmetry: For all u, v ∈ V, f (u, v) = − f (v, u),
• Flow conservation: For all u ∈ V − {s, t} ,

∑
v∈V

f (u, v) = 0.

Another way to think of ßow conservation:∑
v∈V : f (v,u)>0

f (v, u)︸ ︷︷ ︸
total positive
ßow entering u

=
∑

v∈V : f (u,v)>0

f (u, v)︸ ︷︷ ︸
total positive
ßow leaving u

.

Lecture Notes for Chapter 26: Maximum Flow 26-3

�ßow in = ßow out�

The differences between positive ßow p and net ßow f :

• p(u, v) ≥ 0,
• f satisÞes skew symmetry.

Equivalence of positive ßow and net ßow deÞnitions

DeÞne net ßow in terms of positive ßow:

• DeÞne f (u, v) = p(u, v)− p(v, u).
• Argue, given deÞnition of p, that this deÞnition of f satisÞes capacity con-

straint and ßow conservation.

Capacity constraint:

p(u, v) ≤ c(u, v) and p(v, u) ≥ 0 ⇒ p(u, v)− p(v, u) ≤ c(u, v) .

Flow conservation:∑
v∈V

f (u, v) =
∑
v∈V

(p(u, v)− p(v, u))

=
∑
v∈V

p(u, v)−
∑
v∈V

p(v, u)

= 0 .

• Skew symmetry is trivially satisÞed by this deÞnition of f (u, v):

f (u, v) = p(u, v)− p(v, u)

= −(p(v, u)− p(u, v))

= − f (v, u) .

DeÞne positive ßow in terms of net ßow:

• DeÞne

p(u, v) =
{

f (u, v) if f (u, v) > 0 ,

0 if f (u, v) ≤ 0 .

• Argue, given deÞnition of f , that this deÞnition of p satisÞes capacity con-
straint and ßow conservation.

Capacity constraint:

• If f (u, v) > 0:
f (u, v) ≤ c(u, v) ⇒ 0 ≤ p(u, v) ≤ c(u, v).

• If f (u, v) ≤ 0:
0 = p(u, v) ≤ c(u, v).

26-4 Lecture Notes for Chapter 26: Maximum Flow

Flow conservation:∑
v∈V

p(u, v)−
∑
v∈V

p(v, u)

=
(∑

v∈V : f (u,v)>0

p(u, v) +
∑

v∈V : f (u,v)≤0

p(u, v)

)

−
(∑

v∈V : f (u,v)>0

p(v, u)+
∑

v∈V : f (u,v)≤0

p(v, u)

)
=

∑
v∈V : f (u,v)>0

p(u, v) +
∑

v∈V : f (u,v)≤0

p(u, v)

−
∑

v∈V : f (v,u)<0

p(v, u)−
∑

v∈V : f (v,u)≥0

p(v, u)

=
∑

v∈V : f (u,v)>0

p(u, v) + 0− 0−
∑

v∈V : f (v,u)≥0

p(v, u)

=
∑

v∈V : f (u,v)>0

f (u, v)−
∑

v∈V : f (v,u)≥0

f (v, u)

=
∑

v∈V : f (u,v)>0

f (u, v)−
∑

v∈V : f (u,v)≤0

(− f (u, v))

=
∑
v∈V

f (u, v)

= 0 .

[We�ll use net ßow, instead of positive ßow, for the rest of our discussion, in order
to cut the number of summations down by half. From now on, we�ll just call it
�ßow� rather than �net ßow.�]

Value of ßow f = | f | =
∑
v∈V

f (s, v) = total ßow out of source.

Consider the example below. [The cancellation possible in the previous example
has been made here. Also, showing only ßows that are positive.]

2/3

1/2

2/3

2/2

1

1/3
1/1

s t

2/2

w

y

x

z

1/3 1/3 2

Value of ßow f = | f | = 3.

Cancellation with ßow

If we have edges (u, v) and (v, u), skew symmetry makes it so that at most one of
these edges has positive ßow.

Say f (u, v) = 5. If we �ship� 2 units v → u, we lower f (u, v) to 3. The 2 units
v → u cancel 2 of the u → v units.

Due to cancellation, a ßow only gives us this �net� effect. We cannot reconstruct
actual shipments from a ßow.

Lecture Notes for Chapter 26: Maximum Flow 26-5

5 units u → v

0 units v → u
same as

8 units u → v

3 units v → u

We could add another 3 units of ßow u → v and another 3 units v → u, maintain-
ing ßow conservation.

The ßow from u to v would remain f (u, v) = 5, and f (v, u) = −5.

Maximum-ßow problem: Given G, s, t , and c, Þnd a ßow whose value is maxi-
mum.

Implicit summation notation

We work with functions, like f , that take pairs of vertices as arguments.

Extend to take sets of vertices, with interpretation of summing over all vertices in
the set.

Example: If X and Y are sets of vertices,

f (X, Y) =
∑
x∈X

∑
y∈Y

f (x, y) .

Therefore, can express ßow conservation as f (u, V) = 0, for all u ∈ V −{s, t}.
Notation: Omit braces in sets with implicit summations.

Example: f (s, V − s) = f (s, V). Here, f (s, V − s) really means f (s, V −{s}).

Lemma
For any ßow f in G = (V, E):

1. For all X ⊆ V , f (X, X) = 0,

2. For all X, Y ⊆ V , f (X, Y) = − f (Y, X),

3. For all X, Y, Z ⊆ V such that X ∩ Y = ∅,
f (X ∪ Y, Z) = f (X, Z)+ f (Y, Z) and
f (Z, X ∪ Y) = f (Z, X)+ f (Z, Y).

[Leave on board.]

Proof

2. f (X, Y) =
∑
x∈X

∑
y∈Y

f (x, y)

=
∑
x∈X

∑
y∈Y

− f (y, x) (skew symmetry)

=
∑
y∈Y

∑
x∈X

− f (y, x)

= − f (Y, X)

1. f (X, X) = − f (X, X) (part (2))

⇒ f (X, X) = 0

26-6 Lecture Notes for Chapter 26: Maximum Flow

3. f (X ∪ Y, Z) =
∑

v∈X∪Y

∑
z∈Z

f (v, z)

=
∑
v∈X

(∑
z∈Z

f (v, z)

)
+
∑
v∈Y

(∑
z∈Z

f (v, z)

)
(X ∩ Y = ∅)

= f (X, Z)+ f (Y, Z)

Other part is symmetric. (lemma)

Example of using this lemma:

Lemma
| f | = f (V, t).

Proof First, show that f (V, V − s − t) = 0:
f (u, V) = 0 for all u ∈ V − {s, t}
⇒ f (V − s − t, V) = 0 (add up f (u, V) for all u ∈ V −{s, t})
⇒ f (V, V − s − t) = 0 (by lemma, part (2)).

Thus,

| f | = f (s, V) (deÞnition of | f |)
= f (V, V)− f (V − s, V) (lemma, part (3))

= − f (V − s, V) (lemma, part (1))

= f (V, V − s) (lemma, part (2))

= f (V, t)+ f (V, V − s − t) (lemma, part (3))

= f (V, t) (from above) (lemma)

Cuts

A cut (S, T) of ßow network G = (V, E) is a partition of V into S and T = V − S
such that s ∈ S and t ∈ T .

• Similar to cut used in minimum spanning trees, except that here the graph is
directed, and we require s ∈ S and t ∈ T .

For ßow f , the net ßow across cut (S, T) is f (S, T).

Capacity of cut (S, T) is c(S, T).

A minimum cut of G is a cut whose capacity is minimum over all cuts of G.

For our example: [Leave on board.]

G
2/3

1/2

2/3

2/2

1

1/3
1/1

s t

2/2

w

y

x

z

1/3 1/3 2

Lecture Notes for Chapter 26: Maximum Flow 26-7

Consider the cut S = {s, w, y} , T = {x, z, t}.
f (S, T) = f (w, x)+ f (y, x)+ f (y, z)

= 2+−1+ 2

= 3 .

c(S, T) = c(w, x)+ c(y, z)

= 2+ 3

= 5 .

Note the difference between capacity and ßow.

• Flow obeys skew symmetry, so f (y, x) = − f (x, y) = −1.
• Capacity does not: c(y, x) = 0, but c(x, y) = 1.

So include ßows going both ways across the cut, but capacity going only S to T .

Now consider the cut S = {s, w, x, y} , T = {z, t}.
f (S, T) = f (x, z)+ f (x, t) + f (y, z)

= −1+ 2+ 2

= 3 .

c(S, T) = c(x, z)+ c(x, t) + c(y, z)

= 2+ 3+ 3

= 8 .

Same ßow as previous cut, higher capacity.

Lemma
For any cut (S, T), f (S, T) = | f |.
[Leave on board.]

Proof First, show that f (S − s, V) = 0:

S − {s} ⊆ V − {s, t} .

Therefore,

f (S − s, V) =
∑

u∈S−{s}
f (u, V)

=
∑

u∈S−{s}
0 (ßow conservation and S −{s} ⊆ V − {s, t})

= 0 .

So,

f (S, T) = f (S, V)− f (S, S) (lemma, part (3), S ∪ T = V, S ∩ T = ∅)

= f (S, V) (lemma, part (1))

= f (s, V)+ f (S − s, V) (lemma, part (3))

= f (s, V) (f (S − s, V) = 0)

= | f | (lemma)

26-8 Lecture Notes for Chapter 26: Maximum Flow

Corollary
The value of any ßow ≤ capacity of any cut.
[Leave on board.]

Proof Let (S, T) be any cut, f be any ßow.

| f | = f (S, T) (lemma)

=
∑
u∈S

∑
v∈T

f (u, v)

≤
∑
u∈S

∑
v∈T

c(u, v) (capacity constraints)

= c(S, T) . (corollary)

Therefore, maximum ßow ≤ capacity of minimum cut.

Will see a little later that this is in fact an equality.

The Ford-Fulkerson method

Residual network

Given a ßow f in network G = (V, E).

Consider a pair of vertices u, v ∈ V .

How much additional ßow can we push directly from u to v?
That�s the residual capacity,

c f (u, v) = c(u, v)− f (u, v)

≥ 0 (since f (u, v) ≤ c(u, v)) .

Residual network: G f = (V, E f),

E f = {(u, v) ∈ V × V : c f (u, v) > 0} .

Each edge of the residual network can admit a positive ßow.

For our example:

2

1
1

1

1
2

2

3

2
1

1 2 31 2

Gf

s t

w

y

x

z

Every edge (u, v) ∈ E f corresponds to an edge (u, v) ∈ E or (v, u) ∈ E (or both).

Therefore, |E f | ≤ 2 |E |.
Given ßows f1 and f2, the ßow sum f1 + f2 is deÞned by

(f1 + f2)(u, v) = f1(u, v)+ f2(u, v)

for all u, v ∈ V .

Lecture Notes for Chapter 26: Maximum Flow 26-9

Lemma
Given a ßow network G, a ßow f in G, and the residual network G f , let f ′
be any ßow in G f . Then the ßow sum f + f ′ is a ßow in G with value
| f + f ′| = | f | + | f ′|.

[See book for proof.]

Augmenting path

A path s � t in G f .

• Admits more ßow along each edge.
• Like a sequence of pipes through which we can squirt more ßow from s to t .

How much more ßow can we push from s to t along augmenting path p?

c f (p) = min {c f (u, v) : (u, v) is on p} .

For our example, consider the augmenting path p = 〈s, w, y, z, x, t〉.
Minimum residual capacity is 1.

After we push 1 additional unit along p: [Continue from G left on board from
before.]

3

1

1
3

2

3

1
1

1 42 3

Gf

3/3

1/2
3/3

2/2

1

2/3
1/1

2/2

3
2/3

2

G

s t

w

y

x

z

s t

w

y

x

z

Observe that G f now has no augmenting path. Why? No edges cross the cut
({s, w} , {x, y, z, t}) in the forward direction in G f . So no path can get from s to t .

Claim that the ßow shown in G is a maximum ßow.

Lemma
Given ßow network G, ßow f in G, residual network G f . Let p be an augmenting
path in G f . DeÞne f p : V × V → R:

f p(u, v) =
⎧⎨⎩c f (p) if (u, v) is on p ,

−c f (p) if (v, u) is on p ,

0 otherwise .

Then f p is a ßow in G f with value | f p| = c f (p) > 0.

26-10 Lecture Notes for Chapter 26: Maximum Flow

Corollary
Given ßow network G, ßow f in G, and an augmenting path p in Gf , deÞne f p

as in lemma, and deÞne f ′ : V × V → R by f ′ = f + f p. Then f ′ is a ßow in G
with value | f ′| = | f | + c f (p) > | f |.

Theorem (Max-ßow min-cut theorem)
The following are equivalent:

1. f is a maximum ßow.

2. f admits no augmenting path.

3. | f | = c(S, T) for some cut (S, T).

Proof

(1) ⇒ (2): If f admits an augmenting path p, then (by above corollary) would get
a ßow with value | f | + c f (p) > | f |, so f wasn�t a max ßow to start with.

(2) ⇒ (3): Suppose f admits no augmenting path. DeÞne

S = {v ∈ V : there exists a path s � v in G f } ,

T = V − S .

Must have t ∈ T ; otherwise there is an augmenting path.
Therefore, (S, T) is a cut.
For each u ∈ S and v ∈ T , must have f (u, v) = c(u, v), since otherwise
(u, v) ∈ E f and then v ∈ S.

By lemma (f (S, T) = | f |), | f | = f (S, T) = c(S, T).

(3) ⇒ (1): By corollary, | f | ≤ c(S, T).
| f | = c(S, T)⇒ f is a max ßow. (theorem)

Ford-Fulkerson algorithm

FORD-FULKERSON(V, E, s, t)

for all (u, v) ∈ E
do f [u, v] ← f [v, u] ← 0

while there is an augmenting path p in G f

do augment f by c f (p)

Subtle difference between f [u, v] and f (u, v):

• f (u, v) is a function, deÞned on all u, v ∈ V .
• f [u, v] is a value computed by algorithm.

• f [u, v] = f (u, v) where (u, v) ∈ E or (v, u) ∈ E .
• f [u, v] is undeÞned if neither (u, v) ∈ E nor (v, u) ∈ E .

Lecture Notes for Chapter 26: Maximum Flow 26-11

Analysis: If capacities are all integer, then each augmenting path raises| f | by≥ 1.
If max ßow is f ∗, then need ≤ | f ∗| iterations ⇒ time is O(E | f ∗|).
[Handwaving�see book for better explanation.]

Note that this running time is not polynomial in input size. It depends on | f ∗|,
which is not a function of |V | and |E |.
If capacities are rational, can scale them to integers.

If irrational, FORD-FULKERSON might never terminate!

Edmonds-Karp algorithm

Do FORD-FULKERSON, but compute augmenting paths by BFS of G f . Augment-
ing paths are shortest paths s � t in Gf , with all edge weights = 1.

Edmonds-Karp runs in O(V E2) time.

To prove, need to look at distances to vertices in Gf .

Let δ f (u, v) = shortest path distance u to v in G f , with unit edge weights.

Lemma
For all v ∈ V − {s, t}, δ f (s, v) increases monotonically with each ßow augmenta-
tion.

Proof Suppose there exists v ∈ V −{s, t} such that there is a ßow augmentation
that causes δ f (s, v) to decrease. Will derive a contradiction.

Let f be the ßow before the Þrst augmentation that causes a shortest-path distance
to decrease, f ′ be the ßow afterward.

Let v be a vertex with minimum δ f ′(s, v) whose distance was decreased by the
augmentation, so δ f ′(s, v) < δ f (s, v).

Let a shortest path s to v in G f ′ be s � u → v, so (u, v) ∈ E f ′ and δ f ′(s, v) =
δ f ′(s, u)+ 1. (Or δ f ′(s, u) = δ f ′(s, v)− 1.)

Since δ f ′(s, u) < δ f ′(s, v) and how we chose v, we have δ f ′(s, u) ≥ δ f (s, u).

Claim
(u, v) �∈ E f .

Proof If (u, v) ∈ E f , then

δ f (s, v) ≤ δ f (s, u)+ 1 (triangle inequality)

≤ δ f ′(s, u)+ 1

= δ f ′(s, v) ,

contradicting δ f ′(s, v) < δ f (s, v). (claim)

How can (u, v) �∈ E f and (u, v) ∈ E f ′?

The augmentation must increase ßow v to u.

Since Edmonds-Karp augments along shortest paths, the shortest path s to u in Gf

has v → u as its last edge.

26-12 Lecture Notes for Chapter 26: Maximum Flow

Therefore,

δ f (s, v) = δ f (s, u)− 1

≤ δ f ′(s, u)− 1

= δ f ′(s, v)− 2 ,

contradicting δ f ′(s, v) < δ f (s, v).

Therefore, v cannot exist. (lemma)

Theorem
Edmonds-Karp performs O(V E) augmentations.

Proof Suppose p is an augmenting path and cf (u, v) = c f (p). Then call (u, v) a
critical edge in G f , and it disappears from the residual network after an augmen-
tation along p.

≥ 1 edge on any augmenting path is critical.

Will show that each of the |E | edges can become critical ≤ |V | /2− 1 times.

Consider u, v ∈ V such that either (u, v) ∈ E or (v, u) ∈ E or both. Since aug-
menting paths are shortest paths, when (u, v) becomes critical Þrst time, δf (s, v) =
δ f (s, u)+ 1.

Augment ßow, so that (u, v) disppears from the residual network. This edge cannot
reappear in the residual network until ßow from u to v decreases, which happens
only if (v, u) is on an augmenting path in G f ′ : δ f ′(s, u) = δ f ′(s, v) + 1. (f ′ is
ßow when this occurs.)

By lemma, δ f (s, v) ≤ δ f ′(s, v)⇒
δ f ′(s, u) = δ f ′(s, v)+ 1

≥ δ f (s, v)+ 1

= δ f (s, u)+ 2 .

Therefore, from the time (u, v) becomes critical to the next time, distance of u
from s increases by ≥ 2. Initially, distance to u is ≥ 0, and augmenting path can�t
have s, u, and t as intermediate vertices.

Therefore, until u becomes unreachable from source, its distance is ≤|V | − 2 ⇒
u can become critical ≤ (|V | − 2)/2 = |V | /2− 1 times.

Since O(E) pairs of vertices can have an edge between them in residual graph,
total # of critical edges is O(V E). Since each augmenting path has ≥ 1 critical
edge, have O(V E) augmentations. (theorem)

Use BFS to Þnd each augmenting path in O(E) time ⇒ O(V E2) time.

Can get better bounds.

Push-relabel algorithms in Sections 26.4�26.5 give O(V3).

Can do even better.

Lecture Notes for Chapter 26: Maximum Flow 26-13

Maximum bipartite matching

Example of a problem that can be solved by turning it into a ßow problem.

G = (V, E) (undirected) is bipartite if we can partition V = L ∪ R such that all
edges in E go between L and R.

L R

matching maximum matching

L R

A matching is a subset of edges M ⊆ E such that for all v ∈ V , ≤ 1 edge of M
is incident on v. (Vertex v is matched if an edge of M is incident on it; otherwise
unmatched).

Maximum matching: a matching of maximum cardinality. (M is a maximum
matching if |M| ≥ |M ′| for all matchings M′.)

Problem: Given a bipartite graph (with the partition), Þnd a maximum matching.

Application: Matching planes to routes.

• L = set of planes.
• R = set of routes.
• (u, v) ∈ E if plane u can ßy route v.
• Want maximum # of routes to be served by planes.

Given G, deÞne ßow network G′ = (V ′, E ′).
• V ′ = V ∪ {s, t}.
• E ′ = {(s, u) : u ∈ L}

∪ {(u, v) : u ∈ L , v ∈ R, (u, v) ∈ E}
∪ {(v, t) : v ∈ R} .

• c(u, v) = 1 for all (u, v) ∈ E′.

26-14 Lecture Notes for Chapter 26: Maximum Flow

s t

Each vertex in V has ≥ 1 incident edge ⇒|E | ≥ |V | /2.

Therefore, |E | ≤ |E ′| = |E | + |V | ≤ 3 |E |.
Therefore, |E ′| = �(E).

Find a max ßow in G′. Book shows that it will have integer values for all (u, v).

Use edges that carry ßow of 1 in matching.

Book proves this gives maximum matching.

Solutions for Chapter 26:
Maximum Flow

Solution to Exercise 26.1-4

We want to prove the following lemma.

Lemma
For any ßow f in G = (V, E):

1. For all X ⊆ V, f (X, X) = 0,

2. For all X, Y ⊆ V, f (X, Y) = − f (Y, X),

3. For all X, Y, Z ⊆ V such that X ∩ Y = ∅,
f (X ∪ Y, Z) = f (X, Z)+ f (Y, Z) and
f (Z, X ∪ Y) = f (Z, X)+ f (Z, Y).

Proof

2.

f (X, Y) =
∑
x∈X

∑
y∈Y

f (x, y)

=
∑
x∈X

∑
y∈Y

− f (y, x) (skew symmetry)

=
∑
y∈Y

∑
x∈X

− f (y, x)

= − f (Y, X)

1.

f (X, X) = − f (X, X)

⇒ f (X, X) = 0

3.

f (X ∪ Y, Z) =
∑

v∈X∪Y

∑
z∈Z

f (v, z)

=
∑
v∈X

(∑
z∈Z

f (v, z)

)
+
∑
v∈Y

(∑
z∈Z

f (v, z)

)
(X ∩ Y = ∅)

= f (X, Z)+ f (Y, Z)

The other part is symmetric. (lemma)

26-16 Solutions for Chapter 26: Maximum Flow

Solution to Exercise 26.1-6

The ßow sum f1 + f2 satisÞes skew symmetry and ßow conservation, but might
violate the capacity constraint.

We give proofs for skew symmetry and ßow conservation and an example that
shows a violation of the capacity constraint. Let f (u, v) = (f1 + f2)(u, v).

For skew symmetry:

f (u, v) = f1(u, v)+ f2(u, v)

= − f1(v, u)− f2(v, u) (skew symmetry)

= −(f1(v, u)+ f2(v, u))

= − f (v, u) .

For ßow conservation, let u ∈ V − {s, t}:∑
v∈V

f (u, v) =
∑
v∈V

(f1(u, v)+ f2(u, v))

=
∑
v∈V

f1(u, v)+
∑
v∈V

f2(u, v)

= 0+ 0 (ßow conservation)

= 0 .

For the capacity constraint, let V = {s, t}, E = {(s, t)}, and c(s, t) = 1. Let
f1(s, t) = f2(s, t) = 1. Then f1 and f2 obey the capacity constraint, but
(f1 + f2)(u, v) = 2, which violates the capacity constraint.

Solution to Exercise 26.1-7

To see that the ßows form a convex set, we show that if f1 and f2 are ßows, then
so is α f1 + (1− α) f2 for all α such that 0 ≤ α ≤ 1.

For the capacity constraint, Þrst observe that α ≤ 1 implies that 1 − α ≥ 0. Thus,
for any u, v ∈ V , we have

α f1(u, v)+ (1− α) f2(u, v) ≥ 0 · f1(u, v)+ 0 · (1− α) f2(u, v)

= 0 .

Since f1(u, v) ≤ c(u, v) and f2(u, v) ≤ c(u, v), we also have

α f1(u, v)+ (1− α) f2(u, v) ≤ αc(u, v)+ (1− α)c(u, v)

= (α + (1− α))c(u, v)

= c(u, v) .

For skew symmetry, we have f1(u, v) = − f1(v, u) and f2(u, v) = − f2(v, u) for
any u, v ∈ V . Thus, we have

α f1(u, v)+ (1− α) f2(u, v) = −α f1(v, u)− (1− α) f2(v, u)

= −(α f1(v, u)+ (1− α) f2(v, u)) .

Solutions for Chapter 26: Maximum Flow 26-17

For ßow conservation, observe that since f1 and f2 obey ßow conservation, we
have

∑
v∈V f1(u, v) = 0 and

∑
v∈V f2(u, v) = 0 for any u ∈ V − {s, t}. Thus,∑

v∈V

(α f1(u, v)+ (1− α) f2(u, v)) = α
∑
v∈V

f1(u, v)+ (1− α)
∑
v∈V

f2(u, v)

= α · 0+ (1− α) · 0

= 0 .

Solution to Exercise 26.1-9

Create a vertex for each corner, and if there is a street between corners u and v,
create directed edges (u, v) and (v, u). Set the capacity of each edge to 1. Let the
source be corner on which the professor�s house sits, and let the sink be the corner
on which the school is located. We wish to Þnd a ßow of value 2 that also has the
property that f (u, v) is an integer for all vertices u and v. Such a ßow represents
two edge-disjoint paths from the house to the school.

Solution to Exercise 26.2-4

c f (u, v)+ c f (v, u) = c(u, v)− f (u, v)+ c(v, u)− f (v, u)

(by deÞnition)

= c(u, v)+ c(v, u)

(by skew symmetry: f (u, v) = − f (v, u))

Solution to Exercise 26.2-9

For any two vertices u and v in G, you can deÞne a ßow network Guv consisting
of the directed version of G with all edge capacities set to 1, s = u, and t = v.
(Guv has O(V) vertices�actually, |V |�and O(E) edges, as required. We want
all capacities to be 1 so that the number of edges crossing a cut equals the capacity
of the cut.) Let fuv denote a maximum ßow in Guv .

We claim that for any u ∈ V , the edge connectivity k equals min
v∈V−{u}

| fuv|. We�ll

show below that this claim holds. Assuming that it holds, we can Þnd k as follows:

EDGE-CONNECTIVITY(G)

select any vertex u ∈ V
for each vertex v ∈ V − {u} � |V | − 1 iterations

do set up the ßow network Guv as described above
Þnd the maximum ßow fuv on Guv

return the minimum of the |V | − 1 max-ßow values: min
v∈V−{u}

| fuv|

26-18 Solutions for Chapter 26: Maximum Flow

The claim follows from the max-ßow min-cut theorem and how we chose capac-
ities so that the capacity of a cut is the number of edges crossing it. We prove
that k = min

v∈V−{u}
| fuv|, for any u ∈ V by showing separately that k is at least this

minimum and that k is at most this minimum.

• Proof that k ≥ min
v∈V−{u}

| fuv|:
Let m = min

v∈V−{u}
| fuv|. Suppose we remove only m − 1 edges from G. For

any vertex v, by the max-ßow min-cut theorem, u and v are still connected.
(The max ßow from u to v is at least m, hence any cut separating u from v has
capacity at least m, which means at least m edges cross any such cut. Thus at
least one edge is left crossing the cut when we remove m−1 edges.) Thus every
node is connected to u, which implies that the graph is still connected. So at
least m edges must be removed to disconnect the graph�i.e., k ≥ min

v∈V−{u}
| fuv|.

• Proof that k ≤ min
v∈V−{u}

| fuv|:
Consider a vertex v with the minimum | fuv|. By the max-ßow min-cut theorem,
there is a cut of capacity | fuv| separating u and v. Since all edge capacities are 1,
exactly | fuv| edges cross this cut. If these edges are removed, there is no path
from u to v, and so our graph becomes disconnected. Hence k ≤ min

v∈V−{u}
| fuv|.

• Thus, the claim that k = min
v∈V−{u}

| fuv|, for any u ∈ V is true.

Solution to Exercise 26.2-10

From the time (u, v) is a critical edge until it is again a critical edge, δ(s, u)

increases by at least 2, as shown in Theorem 26.9. Similarly, you can show
that δ(v, t) also increases by at least 2. Thus the length of the augmenting path
s � u → v � t increases by at least 4 between times (u, v) is critical. Since the
length of an augmenting path cannot exceed |V |−1, (u, v) can be critical < |V | /4
times.

Edmonds-Karp terminates when there are no more augmenting paths, so it
must terminate when there are no more critical edges, which takes at most
(# edges)·(max # times each edge critical) < |E f | (|V | /4) iterations. In general,
|E f | ≤ 2 |E |, so the number of iterations is at most (actually, fewer than)
|E | |V | /2. But if we assume that G always has edges in both directions (i.e.,
(u, v) ∈ E if and only if (v, u) ∈ E), then |E f | ≤ |E |, and the number of itera-
tions is at most |E | |V | /4.

Solution to Exercise 26.3-3

By deÞnition, an augmenting path is a simple path s � t in the residual graph G′f .
Since G has no edges between vertices in L and no edges between vertices in R,
neither does the ßow network G′ and hence neither does G′

f . Also, the only edges

Solutions for Chapter 26: Maximum Flow 26-19

involving s or t connect s to L and R to t . Note that although edges in G′ can go
only from L to R, edges in G′

f can also go from R to L .

Thus any augmenting path must go

s → L → R → · · · → L → R → t ,

crossing back and forth between L and R at most as many times as it can do
so without using a vertex twice. It contains s, t , and equal numbers of dis-
tinct vertices from L and R�at most 2 + 2 · min(|L| , |R|) vertices in all. The
length of an augmenting path (i.e., its number of edges) is thus bounded above by
2 ·min(|L| , |R|)+ 1.

Solution to Exercise 26.4-2

Each time we call RELABEL(u), we examine all edges (u, v) ∈ E f . Since the
number of relabel operations is at most 2|V | − 1 per vertex, edge (u, v) will be
examined during relabel operations at most 4|V | − 2 = O(V) times (at most
2 |V | − 1 times during calls to RELABEL(u) and at most 2|V | − 1 times during
calls to RELABEL(v)). Summing up over all the possible residual edges, of which
there are at most 2 |E | = O(E), we see that the total time spent relabeling vertices
is O(V E).

Solution to Exercise 26.4-3

We can Þnd a minimum cut, given a maximum ßow found in G = (V, E) by a
push-relabel algorithm, in O(V) time. First, Þnd a height ĥ such that 0 < ĥ < |V |
and there is no vertex whose height equals ĥ at termination of the algorithm.
Since h[s] = |V | and h[t] = 0, we need consider only |V | − 2 vertices. Since
there are |V | − 1 possible values for ĥ, we know that for at least one number in
1, 2, . . . , |V | − 1, there will be no vertex of that height. Hence, ĥ is well deÞned,
and it is easy to Þnd in O(V) time by using a simple boolean array indexed by
heights 1, 2, . . . , |V | − 1.

Let S = {u ∈ V : h[u] > ĥ} and T = {v ∈ V : h[v] < ĥ}. Because h[s] = |V | >

ĥ, we have s ∈ S, and because h[t] = 0 < ĥ, we have t ∈ T , as required for a cut.

We need to show that f (u, v) = c(u, v), i.e., that (u, v) �∈ E f for all u ∈ S and
v ∈ T . Once we do that, we have that f (S, T) = c(S, T), and by Corollary 26.6,
(S, T) is a minimum cut.

Suppose for the purpose of contradiction that there exist vertices u ∈ S and v ∈ T
such that (u, v) ∈ E f . Because h is always maintained as a height function
(Lemma 26.17), we have that h[u] ≤ h[v]+ 1. But we also have h[v] < ĥ < h[u],
and because all values are integer, h[v] ≤ h[u] − 2. Thus, we have h[u] ≤
h[v]+ 1 ≤ h[u] − 2+ 1 = h[u] − 1, which gives the contradiction that 0 ≤ −1.
Thus, (S, T) is a minimum cut.

26-20 Solutions for Chapter 26: Maximum Flow

Solution to Exercise 26.4-6

If we set h[s] = |V | − 2, we have to change our deÞnition of a height function to
allow h[s] = |V | − 2, rather than h[s] = |V |. The only change we need to make to
the proof of correctness is to update the proof of Lemma 26.18. The original proof
derives the contradiction that h[s] ≤ k < |V |, which is at odds with h[s] = |V |.
When h[s] = |V | − 2, there is no contradiction.

As in the original proof, let us suppose that we have a simple augmenting path
〈v0, v1, . . . , vk〉, where v0 = s and vk = t , so that k < |V |. How could (s, v1)

be a residual edge? It had been saturated in INITIALIZE-PREFLOW, which means
that we had to have pushed some ßow from v1 to s. In order for that to have
happened, we must have had h[v1] = h[s] + 1. If we set h[s] = |V | − 2, that
means that h[v1] was |V |−1 at the time. Since then, h[v1] did not decrease, and so
we have h[v1] ≥ |V | − 1. Working backwards over our augmenting path, we have
h[vk−i] ≤ h[t] + i for i = 0, 1, . . . , k. As before, because the augmenting path is
simple, k < |V |. Letting i = k − 1, we have h[v1] ≤ h[t]+ k − 1 < 0+ |V | − 1.
We now have the contradiction that h[v1] ≥ |V | − 1 and h[v1] < |V | − 1, which
shows that Lemma 26.18 still holds.

Nothing in the analysis changes asymptotically.

Solution to Problem 26-2

a. The idea is to use a maximum-ßow algorithm to Þnd a maximum bipartite
matching that selects the edges to use in a minimum path cover. We must show
how to formulate the max-ßow problem and how to construct the path cover
from the resulting matching, and we must prove that the algorithm indeed Þnds
a minimum path cover.

DeÞne G′ as suggested, with directed edges. Make G′ into a ßow network
with source x0 and sink y0 by deÞning all edge capacities to be 1. G′ is the
ßow network corresponding to a bipartite graph G′′ in which L = {x1, . . . xn},
R = {y1, . . . yn}, and the edges are the (undirected version of the) subset of E′
that doesn�t involve x0 or y0.

The relationship of G to the bipartite graph G′′ is that every vertex i in G is
represented by two vertices, xi and yi , in G′′. Edge (i, j) in G corresponds to
edge (xi , y j) in G′′. That is, an edge (xi , y j) in G′′ means that an edge in G
leaves i and enters j . xi tells us about edges leaving i and yi tells us about
edges entering i .

The edges in a bipartite matching in G′′ can be used in a path cover of G,
because:

• In a bipartite matching, no vertex is used more than once. In a bipartite
matching in G′′, the fact that no xi is used more than once means that at most
one edge in the matching leaves any vertex i in G, and similarly the fact that

Solutions for Chapter 26: Maximum Flow 26-21

no yi is used more than once means that at most one edge in the matching
enters any vertex i in G.

• In a path cover, no vertex appears in more than one path, hence at most one
path edge enters each vertex and at most one path edge leaves each vertex.

We can construct a path cover P from any bipartite matching M (not just a
maximum matching) by moving from some xi to the matching yj (if any), then
from x j to its matching yk , and so on, as follows:

1. Start a new path containing a vertex i that has not yet been placed in a path.
2. If xi is unmatched, the path can�t go any farther; just add it to P .
3. If xi is matched to some yj , add j to the current path. If j has already been

placed in a path (i.e., though we�ve just entered j by processing yj , we�ve
already built a path that leaves j by processing xj), combine this path with
that one and go back to step 1. Otherwise go to step 2 to process xj .

This algorithm constructs a path cover because:
• Every vertex is put into some path, because we keep picking an unused vertex

from which to start a path until there are no unused vertices.
• No vertex is put into two paths, because every xi is matched to at most one yj ,

and vice versa. That is, at most one candidate edge leaves each vertex and at
most one candidate edge enters each vertex. The normal path-building starts
at or enters a vertex and then leaves it, building a single path. If we ever enter
a vertex that was left earlier, it must have been the start of another path, since
there are no cycles, and we combine those paths so that the vertex is entered
and left on a single path.

Every edge in M is used in some path because we visit every xi , and we incor-
porate the single edge, if any, from each visited xi . Thus there is a one-to-one
correspondence between edges in the matching and edges in the constructed
path cover.

We now show that the path cover P constructed above has the fewest possible
paths when the matching is maximum.

Let f be the ßow corresonding to the bipartite matching M .
|V | =

∑
p∈P

(# vertices in p) (every vertex is on exactly 1 path)

=
∑
p∈P

(1 + # edges in p)

=
∑
p∈P

1+
∑
p∈P

(# edges in p)

= |P| + (# edges in M) (by 1-to-1 correspondence)

= |P| + | f | (Lemma 26.10) .
Thus for the Þxed set V in our graph G, |P| (the number of paths) is minimized
when the ßow f is maximized.

Thus the overall algorithm is as follows:
• Use FORD-FULKERSON to Þnd a maximum ßow in G ′, hence a maximum

bipartite matching M in G′′.
• Construct the path cover as described above.

26-22 Solutions for Chapter 26: Maximum Flow

Time: O(V E) total

• O(V + E) to set up G′
• O(V E) to Þnd the maximum bipartite matching
• O(E) to trace the paths, because each edge ∈ M is traversed only once and

there are O(E) edges in M .

b. The algorithm does not work if there are cycles.

Consider a graph G with 4 vertices, consisting of a directed triangle and an
edge pointing to the triangle:

E = {(1, 2), (2, 3), (3, 1), (4, 1)}
G can be covered with a single path: 4 → 1 → 2 → 3, but our algorithm
might Þnd only a 2-path cover.

In the bipartite graph G′, the edges (xi , y j) are

(x1, y2), (x2, y3), (x3, y1), (x4, y1) .

There are 4 edges from an xi to a yj , but 2 of them lead to y1, so a maximum
bipartite matching can have only 3 edges (and the maximum ßow in G′ is 3). In
fact, there are 2 possible maximum matchings. It is always possible to match
x1 → y2 and x2 → y3, but then either x3 → y1 or x4 → y1 can be chosen, but
not both.

The maximum-ßow found by one of our max-ßow algorithms could Þnd the
ßow corresponding to either of these matchings, since both are maximal. But
one of the matchings doesn�t contain an edge to or from vertex 4, so given
that matching, our path algorithm is forced to produce 2 paths, one of which
contains just the vertex 4.

Solution to Problem 26-4

a. Just execute one iteration of the Ford-Fulkerson algorithm. The edge (u, v) in E
with increased capacity ensures that the edge (u, v) is in the residual graph. So
look for an augmenting path and update the ßow if a path is found.

Time: O(V + E) = O(E) if we Þnd the augmenting path with either depth-
Þrst or breadth-Þrst search.

To see that only one iteration is needed, consider separately the cases in which
(u, v) is or is not an edge that crosses a minimum cut. If (u, v) does not cross a
minimum cut, then increasing its capacity does not change the capacity of any
minimum cut, and hence the value of the maximum ßow does not change. If
(u, v) does cross a minimum cut, then increasing its capacity by 1 increases the
capacity of that minimum cut by 1, and hence possibly the value of the maxi-
mum ßow by 1. In this case, there is either no augmenting path (in which case
there was some other minimum cut that (u, v) does not cross), or the augment-
ing path increases ßow by 1. No matter what, one iteration of Ford-Fulkerson
sufÞces.

Solutions for Chapter 26: Maximum Flow 26-23

b. Let f be the maximum ßow before reducing c(u, v).

If f (u, v) = 0, we don�t need to do anything.

If f (u, v) > 0, we will need to update the maximum ßow. Assume from now
on that f (u, v) > 0, which in turn implies that f (u, v) ≥ 1.

DeÞne f ′(x, y) = f (x, y) for all x, y ∈ V , except that f ′(u, v) = f (u, v)−1.
Although f ′ obeys all capacity contraints, even after c(u, v) has been reduced,
it is not a legal ßow, as it violates skew symmetry and ßow conservation at u
and v. f ′ has one more unit of ßow entering u than leaving u, and it has one
more unit of ßow leaving v than entering v.

The idea is to try to reroute this unit of ßow so that it goes out of u and into v

via some other path. If that is not possible, we must reduce the ßow from s to u
and from v to t by one unit.

Look for an augmenting path from u to v (note: not from s to t).

• If there is such a path, augment the ßow along that path.
• If there is no such path, reduce the ßow from s to u by augmenting the ßow

from u to s. That is, Þnd an augmenting path u � s and augment the ßow
along that path. (There deÞnitely is such a path, because there is ßow from s
to u.) Similarly, reduce the ßow from v to t by Þnding an augmenting path
t � v and augmenting the ßow along that path.

Time: O(V + E) = O(E) if we Þnd the paths with either DFS or BFS.

Solution to Problem 26-5

a. The capacity of a cut is deÞned to be the sum of the capacities of the edges
crossing it. Since the number of such edges is at most |E |, and the capacity of
each edge is at most C , the capacity of any cut of G is at most C |E |.

b. The capacity of an augmenting path is the minimum capacity of any edge on the
path, so we are looking for an augmenting path whose edges all have capacity at
least K . Do a breadth-Þrst search or depth-Þrst-search as usual to Þnd the path,
considering only edges with residual capacity at least K . (Treat lower-capacity
edges as though they don�t exist.) This search takes O(V + E) = O(E) time.
(Note that |V | = O(E) in a ßow network.)

c. MAX-FLOW-BY-SCALING uses the Ford-Fulkerson method. It repeatedly aug-
ments the ßow along an augmenting path until there are no augmenting paths
of capacity greater ≥ 1. Since all the capacities are integers, and the capac-
ity of an augmenting path is positive, this means that there are no augmenting
paths whatsoever in the residual graph. Thus, by the max-ßow min-cut theorem,
MAX-FLOW-BY-SCALING returns a maximum ßow.

d. • The Þrst time line 4 is executed, the capacity of any edge in Gf equals its
capacity in G, and by part (a) the capacity of a minimum cut of G is at most
C |E |. Initially K = 2	lg C
, hence 2K = 2 · 2	lg C
 = 2	lg C
+1 > 2lg C = C .
So the capacity of a minimum cut of G f is initially less than 2K |E |.

26-24 Solutions for Chapter 26: Maximum Flow

• The other times line 4 is executed, K has just been halved, so the capacity
of a cut of G f is at most 2K |E | at line 4 if and only if that capacity was at
most K |E | when the while loop of lines 5�6 last terminated. So we want
to show that when line 7 is reached, the capacity of a minimum cut of Gf is
most K |E |.
Let G f be the residual network when line 7 is reached.
There is no augmenting path of capacity ≥ K in Gf

⇒ max ßow f ′ in G f has value | f ′| < K |E |
⇒ min cut in G f has capacity < K |E |

e. By part (d), when line 4 is reached, the capacity of a minimum cut of Gf is at
most 2K |E |, and thus the maximum ßow in G f is at most 2K |E |.
By an extension of Lemma 26.2, the value of the maximum ßow in G equals
the value of the current ßow in G plus the value of the maximum ßow in Gf .
(Lemma 26.2 shows that, given a ßow f in G, every ßow f ′ in G f induces a
ßow f + f ′ in G; the reverse claim, that every ßow f + f ′ in G induces a
ßow f ′ in G f , is proved in a similar manner. Together these claims provide the
necessary correspondence between a maximum ßow in G and a maximum ßow
in G f .) Therefore, the maximum ßow in G is at most 2K |E | more than the
current ßow in G. Every time the inner while loop Þnds an augmenting path
of capacity at least K , the ßow in G increases by ≥ K . Since the ßow cannot
increase by more than 2K |E |, the loop executes at most (2K |E |)/K = 2 |E |
times.

f. The time complexity is dominated by the loop of lines 4�7. (The lines out-
side the loop take O(E) time.) The outer while loop executes O(lg C) times,
since K is initially O(C) and is halved on each iteration, until K < 1. By
part (e), the inner while loop executes O(E) times for each value of K ; and by
part (b), each iteration takes O(E) time. Thus, the total time is O(E2 lg C).

Lecture Notes for Chapter 27:
Sorting Networks

Chapter 27 overview

Sorting networks

An example of parallel algorithms.

We�ll see how, if we allow a certain kind of parallelism, we can sort in O(lg2 n)

�time.�

Along the way, we�ll see the 0-1 principle, which is a great way to prove the cor-
rectness of any comparison-based sorting algorithm.

Comparison networks

Comparator

 x

y

min(x,y)

max(x,y)

Works in O(1) time.

Comparison network

5

6

2

9

6

5

5

9

2

6

9

5

2

6

2

9

input output

wire

Wires go straight, left to right.

Each comparator has inputs/outputs on some pair of wires.

Claim that this comparison network will sort any set of 4 input values:

27-2 Lecture Notes for Chapter 27: Sorting Networks

• After leftmost comparators, minimum is on either wire 1 (from top) or 3,
maximum is on either wire 2 or 4.

• After next 2 comparators, minimum is on wire 1, maximum on wire 4.
• Last comparator gets correct values onto wires 2 and 3.

Running time = depth = longest path of comparators. (3 in previous example.)
• Think of dag of comparators that depend on each other. Depth = longest path

through dag (counting vertices, not edges).

• Depth �= max # of comparators attached to a single wire.
• In the above example, that is 2.

Selection sorter

To Þnd max of 5 values:

Can repeat, decreasing # of values:

Depth: D(n) = D(n − 1)+ 2

D(2) = 1

⇒ D(n) = 2n − 3

= �(n) .

If view depth as �time,� parallelism gets us a faster method than any sequential
comparison sort!
Can view the same network as insertion sort:

[This material answers Exercise 27.1-6, showing that the network in Figure 27.3
does correctly sort and showing its relationship to insertion sort.]

Lecture Notes for Chapter 27: Sorting Networks 27-3

Zero-one principle

How can we test if a comparison network sorts?
• We could try all n! permutations of input.
• But we need to test only 2n permutations. This is many fewer than all n! per-

mutations.

Theorem (0-1 principle)
If a comparison network with n inputs sorts all 2n sequences of 0�s and 1�s, then it
sorts all sequences of arbitrary numbers.

Note: In practice, we don�t even have to reason about �all 2n sequences��instead,
we look at the patterns of 0�s and 1�s�we�ll see later how.

Lemma
If a comparison network transforms

a = 〈a1, a2, . . . , an〉 into b = 〈b1, b2, . . . , bn〉 ,

then for any monotonically increasing function f , it transforms

f (a) = 〈 f (a1), f (a2), . . . , f (an)〉 into f (b) = 〈 f (b1), f (b2), . . . , f (bm)〉 .

Sketch of proof

 x

y

min(x,y)

max(x,y)

f(x)

f(y)

min(f(x), f(y)) = f(min(x,y))

max(f(x), f(y)) = f(max(x,y))

since f is monotonically increasing

Then use induction on comparator depth. (lemma)

Proof (of 0-1 principle)

Suppose that the principle is not true, so that an n-input comparison network sorts
all 0-1 sequences, but there is a sequence 〈a1, a2, . . . , an〉 such that ai < a j but ai

comes after aj in the output.

DeÞne the monotonically increasing function

f (x) =
{

0 if x ≤ ai ,

1 if x > ai .

By the lemma, if we give the input 〈 f (a1), f (a2), . . . , f (an)〉, then the output will
have f (ai) after f (aj):

f(aj) = 1

f(ai) = 0

But that�s a 0-1 sequence that is sorted incorrectly, a contradiction. (theorem)

27-4 Lecture Notes for Chapter 27: Sorting Networks

A bitonic sorting network

Constructing a sorting network

Step 1: Construct a �bitonic sorter.� It sorts any bitonic sequence.

A sequence is bitonic if it monotonically increases, then monotonically decreases,
or it can be circularly shifted to become so.

Examples: 〈1, 3, 7, 4, 2〉
〈6, 8, 3, 1, 2, 4〉
〈8, 7, 2, 1, 3, 5〉
Any sequence of 1 or 2 numbers

For 0-1 sequences�which we can focus on�bitonic sequences have the form

0i 1j 0k 1i 0j 1k

0 1 0 1 0 1

Half-cleaner:

0

0

1

1

1

0

0

0

0

0

0

1

0

1

0 1

bitonic

clean

bitonic

0

0

1

1

1

1

1

0

0

1

0

1

1

1

0 1

bitonic

clean

bitonic

Depth = 1.

Lemma
If the input to a half-cleaner is a bitonic 0-1 sequence, then for the output:

• both the top and bottom half are bitonic,
• every element in the top half is ≤ every element in the bottom half, and
• at least one of the halves is clean�all 0�s or all 1�s.

Skipping proof�see book (not difÞcult at all).

Lecture Notes for Chapter 27: Sorting Networks 27-5

Bitonic sorter:

≤

bitonic
sorter

half-cleaner
n

n/2

n/2

n/2

n/2
sortedbitonic

bitonic

sorted

sorted

bitonic
sorter

0

0

0

0

1

0

1

1

0

0

0

0

1

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

1

1

1

bitonic sorted

Depth: D(n) = D(n/2)+ 1

D(2) = 1

⇒ D(n) = lg n .

Step 2: Construct a merging network.

It merges 2 sorted sequences.
Adapt a half-cleaner.

Idea: Given 2 sorted sequences, reverse the second one, then concatenate with the
Þrst one ⇒ get a bitonic sequence.

Example:

X = 0011 Y = 0111
Y R = 1110

XY R = 00111110 (bitonic)

So, we can merge X and Y by doing a bitonic sort on X and YR.

How to reverse Y ? Don�t!

Instead, reverse the bottom half of the connections of the Þrst half-cleaner:

≤

0

0

1

1

0

1

1

1

0

0

1

0

1

1

1

1

bitonic

clean

X,
sorted

Y,
sorted

27-6 Lecture Notes for Chapter 27: Sorting Networks

Full merging network:

0

0

1

0

1

1

1

1

0

0

1

0

1

1

1

1

0

1

1

1

0

0

1

1

0

0

0

1

1

1

1

1

sorted

X,
sorted

Y,
sorted

Depth is same as bitonic sorter: lg n.

Step 3: Construct a sorting network.

Recursive merging�like merge sort, bottom-up:

1

0

1

0

1

0

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

1

0

0

0

0

1

1

0

0

0

1

sorter

merger

sorter

n/2

n/2

n/2

n/2

n

sorted

merger

merger

merger

merger

merger

merger

merger

2

2

2

2

4

4

8

sorted

sorted

mergers mergers merger

Depth: D(n) = D(n/2)+ lg n

D(2) = 1

⇒ D(n) = �(lg2 n) (Exercise 4.4-2) .

Lecture Notes for Chapter 27: Sorting Networks 27-7

Use 0-1 principle to prove that this sorts all inputs.

Can we do better?

Yes�the AKS network has depth O(lg n).

• Huge constant�over 1000.
• Really hard to construct.
• Highly impractical�of theoretical interest only.

Solutions for Chapter 27:
Sorting Networks

Solution to Exercise 27.1-4

Consider any input element x . After 1 level of the network, x can be in at most 2
different places, in at most 4 places after 2 levels, and so forth. Thus we need at
least lg n depth to be able to move x to the right place, which could be any of the n
(= 2lg n) outputs.

Solution to Exercise 27.1-5

Simulation of any sorting network on a serial machine is a comparison sort,
hence there are �(n lg n) comparisons/comparators. Intuitively, since the depth
is �(lg n) and we can perform at most n/2 comparisons at each depth of the net-
work, this �(n lg n) bound makes sense.

Solution to Exercise 27.1-7

We take advantage of the comparators appearing in sorted order within the network
in the following pseudocode.

for i ← 1 to n
do d[i] ← 0

for each comparator (i, j) in the list of comparators
do d[i] ← d[j] ← max(d[i], d[j])+ 1

return max1≤i≤n d[i]

This algorithm implicitly Þnds the longest path in a dag of the comparators (in
which an edge connects each comparator to the comparators that need its outputs).
Even though we don�t explicitly construct the dag, the above sort produces a topo-
logical sort of the dag.

The Þrst for loop takes �(n) time, the second for loop takes �(c) time, and com-
puting the maximum d[i] value in the return statement takes �(n) time, for a total
of �(n + c) = O(n + c) time.

Solutions for Chapter 27: Sorting Networks 27-9

Solution to Exercise 27.2-2

In both parts of the proof, we will be using a set { f1, f2, . . . , fn−1} of monotoni-
cally increasing functions, where

fk(x) =
{

0 if x ≤ k ,

1 if x > k .

For convenience, let us also deÞne the sequences s1, s2, . . . , sn−1, where si is the
sequence consisting of n − i 1�s followed by i 0�s.

⇒ : Assume that the sequence 〈n,n−1, . . . ,1〉 is correctly sorted by the given com-
parison network. Then by Lemma 27.1, we know that applying any monotonically
increasing function to the sequence s = 〈n, n− 1, . . . , 1〉 produces a sequence that
is also correctly sorted by the given comparison network. For k = 1, 2, . . . , n − 1,
when we apply the monotonically increasing function fk to the sequence s, the
resulting sequence is sk , which is correctly sorted by the comparison network.

⇐ : Now assume that the comparison network fails to correctly sort the input
sequence 〈n, n − 1, . . . , 1〉. Then there are elements i and j in this sequence
for which i < j but i appears after j in the output sequence. Consider the input
sequence 〈 fi(n), fi(n − 1), . . . , fi(1)〉, which is the same as the sequence si . By
Lemma 27.1, the network produces an output sequence in which fi(i) appears
after fi(j). But fi(i) = 0 and fi(j) = 1, and so the network fails to sort the input
sequence si .

Solution to Exercise 27.5-1

SORTER[n] consists of (n/4) lg2 n + (n/4) lg n = �(n lg2 n) comparators. To see
this result, we Þrst note that MERGER[n] consists of (n/2) lg n comparators, since
it has lg n levels, each with n/2 comparators.

If we denote the number of comparators in SORTER[n] by C(n), we have the re-
currence

C(n) =
{

0 if n = 1 ,

2C(n/2)+ n

2
lg n if n = 2k and k ≥ 1 .

We prove that C(n) = (n/4) lg2 n + (n/4) lg n by induction on k.

Basis: When k = 0, we have n = 1. Then (n/4) lg2 n + (n/4) lg n = 0 = C(n).

Inductive step: Assume that the inductive hypothesis holds for k − 1, so that
C(n/2) = (n/8) lg2(n/2) + (n/8) lg(n/2) = (n/8)(lg n − 1)2 + (n/8)(lg n − 1).
We have

27-10 Solutions for Chapter 27: Sorting Networks

C(n) = 2C(n/2)+ n

2
lg n

= 2
(n

8
(lg n − 1)2 + n

8
(lg n − 1)

)
+ n

2
lg n

= n

4
lg2 n − n

2
lg n + n

4
+ n

4
lg n − n

4
+ n

2
lg n

= n

4
lg2 n + n

4
lg n .

Solution to Exercise 27.5-2

We show by substitution that the recurrence for the depth of SORTER[n],

D(n) =
{

0 if n = 1 ,

D(n/2)+ lg n if n = 2k and k ≥ 1 ,

has the solution D(n) = (lg n)(lg n + 1)/2.

Basis: When k = 0, we have n = 1. Then (lg n)(lg n + 1)/2 = 0 = D(1).

Inductive step: Assume that the inductive hypothesis holds for k − 1, so that
D(n/2) = (lg(n/2))(lg(n/2)+ 1)/2 = (lg n − 1)(lg n)/2. We have

D(n) = D(n/2)+ lg n

= (lg n − 1)(lg n)

2
+ lg n

= lg2 n − lg n

2
+ lg n

= lg2 n + lg n

2

= (lg n)(lg n + 1)

2
.

Index

This index covers exercises and problems from the textbook that are solved in this
manual. The Þrst page in the manual that has the solution is listed here.

Exercise 2.2-2, 2-16
Exercise 2.2-4, 2-16
Exercise 2.3-3, 2-16
Exercise 2.3-4, 2-17
Exercise 2.3-5, 2-17
Exercise 2.3-6, 2-18
Exercise 2.3-7, 2-18
Exercise 3.1-1, 3-7
Exercise 3.1-2, 3-7
Exercise 3.1-3, 3-8
Exercise 3.1-4, 3-8
Exercise 3.1-8, 3-8
Exercise 3.2-4, 3-9
Exercise 4.2-2, 4-8
Exercise 4.2-5, 4-8
Exercise 5.1-3, 5-8
Exercise 5.2-1, 5-9
Exercise 5.2-2, 5-9
Exercise 5.2-4, 5-10
Exercise 5.2-5, 5-11
Exercise 5.3-1, 5-11
Exercise 5.3-2, 5-12
Exercise 5.3-3, 5-12
Exercise 5.3-4, 5-13
Exercise 5.4-6, 5-13
Exercise 6.1-1, 6-10
Exercise 6.1-2, 6-10
Exercise 6.1-3, 6-10
Exercise 6.2-6, 6-10
Exercise 6.3-3, 6-11
Exercise 6.4-1, 6-13
Exercise 6.5-2, 6-14
Exercise 7.2-3, 7-9
Exercise 7.2-5, 7-9

Exercise 7.3-1, 7-9
Exercise 7.4-2, 7-10
Exercise 8.1-3, 8-9
Exercise 8.1-4, 8-9
Exercise 8.2-2, 8-10
Exercise 8.2-3, 8-10
Exercise 8.2-4, 8-10
Exercise 8.3-2, 8-11
Exercise 8.3-3, 8-11
Exercise 8.3-4, 8-12
Exercise 8.4-2, 8-12
Exercise 9.1-1, 9-9
Exercise 9.3-1, 9-9
Exercise 9.3-3, 9-10
Exercise 9.3-5, 9-11
Exercise 9.3-8, 9-11
Exercise 9.3-9, 9-12
Exercise 11.1-4, 11-16
Exercise 11.2-1, 11-17
Exercise 11.2-4, 11-17
Exercise 11.3-3, 11-18
Exercise 11.3-5, 11-19
Exercise 12.1-2, 12-12
Exercise 12.2-5, 12-12
Exercise 12.2-7, 12-12
Exercise 12.3-3, 12-13
Exercise 12.4-1, 12-10, 12-14
Exercise 12.4-3, 12-7
Exercise 12.4-4, 12-15
Exercise 13.1-3, 13-13
Exercise 13.1-4, 13-13
Exercise 13.1-5, 13-13
Exercise 13.2-4, 13-14
Exercise 13.3-3, 13-14

I-2 Index

Exercise 13.3-4, 13-15
Exercise 13.4-6, 13-16
Exercise 13.4-7, 13-16
Exercise 14.1-5, 14-9
Exercise 14.1-6, 14-9
Exercise 14.1-7, 14-9
Exercise 14.2-2, 14-10
Exercise 14.2-3, 14-12
Exercise 14.3-3, 14-13
Exercise 14.3-6, 14-13
Exercise 14.3-7, 14-14
Exercise 15.1-5, 15-19
Exercise 15.2-4, 15-19
Exercise 15.3-1, 15-20
Exercise 15.4-4, 15-21
Exercise 16.1-2, 16-9
Exercise 16.1-3, 16-9
Exercise 16.1-4, 16-10
Exercise 16.2-2, 16-11
Exercise 16.2-4, 16-12
Exercise 16.2-6, 16-13
Exercise 16.2-7, 16-13
Exercise 16.4-2, 16-14
Exercise 16.4-3, 16-14
Exercise 17.1-3, 17-14
Exercise 17.2-1, 17-14
Exercise 17.2-2, 17-15
Exercise 17.2-3, 17-16
Exercise 17.3-3, 17-17
Exercise 21.2-3, 21-6
Exercise 21.2-5, 21-7
Exercise 21.3-3, 21-7
Exercise 21.3-4, 21-7
Exercise 21.4-4, 21-8
Exercise 21.4-5, 21-8
Exercise 21.4-6, 21-9
Exercise 22.1-6, 22-12
Exercise 22.1-7, 22-14
Exercise 22.2-4, 22-14
Exercise 22.2-5, 22-14
Exercise 22.2-6, 22-14
Exercise 22.3-4, 22-15
Exercise 22.3-7, 22-15
Exercise 22.3-8, 22-16
Exercise 22.3-10, 22-16
Exercise 22.3-11, 22-16
Exercise 22.4-3, 22-17
Exercise 22.4-5, 22-18

Exercise 22.5-5, 22-19
Exercise 22.5-6, 22-20
Exercise 22.5-7, 22-21
Exercise 23.1-1, 23-8
Exercise 23.1-4, 23-8
Exercise 23.1-6, 23-8
Exercise 23.1-10, 23-9
Exercise 23.2-4, 23-9
Exercise 23.2-5, 23-9
Exercise 23.2-7, 23-10
Exercise 24.1-3, 24-13
Exercise 24.2-3, 24-13
Exercise 24.3-3, 24-14
Exercise 24.3-4, 24-14
Exercise 24.3-6, 24-15
Exercise 24.3-7, 24-16
Exercise 24.4-4, 24-17
Exercise 24.4-7, 24-18
Exercise 24.4-10, 24-18
Exercise 24.5-4, 24-18
Exercise 24.5-7, 24-19
Exercise 24.5-8, 24-19
Exercise 25.1-3, 25-8
Exercise 25.1-5, 25-8
Exercise 25.1-10, 25-9
Exercise 25.2-4, 25-11
Exercise 25.2-6, 25-12
Exercise 25.3-4, 25-13
Exercise 25.3-6, 25-13
Exercise 26.1-4, 26-15
Exercise 26.1-6, 26-16
Exercise 26.1-7, 26-16
Exercise 26.1-9, 26-17
Exercise 26.2-4, 26-17
Exercise 26.2-9, 26-17
Exercise 26.2-10, 26-18
Exercise 26.3-3, 26-18
Exercise 26.4-2, 26-19
Exercise 26.4-3, 26-19
Exercise 26.4-6, 26-20
Exercise 27.1-4, 27-8
Exercise 27.1-5, 27-8
Exercise 27.1-6, 27-2
Exercise 27.1-7, 27-8
Exercise 27.2-2, 27-9
Exercise 27.5-1, 27-9
Exercise 27.5-2, 27-10

Index I-3

Problem 2-1, 2-19
Problem 2-2, 2-20
Problem 2-4, 2-21
Problem 3-3, 3-9
Problem 4-1, 4-9
Problem 4-4, 4-11
Problem 5-1, 5-14
Problem 6-1, 6-14
Problem 6-2, 6-15
Problem 7-4, 7-11
Problem 8-1, 8-12
Problem 8-3, 8-15
Problem 8-4, 8-16
Problem 9-1, 9-13
Problem 9-2, 9-14
Problem 9-3, 9-18
Problem 11-1, 11-20
Problem 11-2, 11-21
Problem 11-3, 11-24
Problem 12-2, 12-16
Problem 12-3, 12-17
Problem 13-1, 13-16
Problem 14-1, 14-15
Problem 14-2, 14-16
Problem 15-1, 15-22
Problem 15-2, 15-24
Problem 15-3, 15-27
Problem 15-6, 15-30
Problem 16-1, 16-16
Problem 17-2, 17-18
Problem 17-4, 17-20
Problem 21-1, 21-9
Problem 21-2, 21-11
Problem 22-1, 22-22
Problem 22-3, 22-22
Problem 22-4, 22-26
Problem 23-1, 23-12
Problem 24-1, 24-19
Problem 24-2, 24-20
Problem 24-3, 24-21
Problem 24-4, 24-22
Problem 24-6, 24-24
Problem 25-1, 25-13
Problem 26-2, 26-20
Problem 26-4, 26-22
Problem 26-5, 26-23

	Contents
	Preface
	Chapter 2
	Chapter 2 : Solutions

	Chapter 3
	Chapter 3 : Solutions

	Chapter 4
	Chapter 4 : Solutions

	Chapter 5
	Chapter 5 : Solutions

	Chapter 6
	Chapter 6 : Solutions

	Chapter 7
	Chapter 7 : Solutions

	Chapter 8
	Chapter 8 : Solutions

	Chapter 9
	Chapter 9 : Solutions

	Chapter 11
	Chapter 11 : Solutions

	Chapter 12
	Chapter 12 : Solutions

	Chapter 13
	Chapter 13 : Solutions

	Chapter 14
	Chapter 14 : Solutions

	Chapter 15
	Chapter 15 : Solutions

	Chapter 16
	Chapter 16 : Solutions

	Chapter 17
	Chapter 17 : Solutions

	Chapter 21
	Chapter 21 : Solutions

	Chapter 22
	Chapter 22 : Solutions

	Chapter 23
	Chapter 23 : Solutions

	Chapter 24
	Chapter 24: Solutions

	Chapter 25
	Chapter 25 : Solutions

	Chapter 26
	Chapter 26 : Solutions

	Chapter 27
	Chapter 27 : Solutions

	Index for Solutions

